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Abstract

A mechanics-based approach to the evolution of buckle folds is proposed. Existing analytic and simple numerical models are used to

demonstrate that dramatic changes in layer parallel stress occur in developing folds and that the bulk effective rheology of folding rocks is

strongly reduced in relation to neighbouring rocks with no folds. A methodology for estimating regions of folds more or less likely to suffer

fracture is set out. In this methodology a simple abstraction of the natural fold is identified and the stress history during its development is

calculated using linear viscosity as a proxy for competence. This simple and computationally cheap approach allows all salient features of

natural multilayer folds to be recreated in numerical experiments. The final step in the method is to use the stress conditions for three types of

fracture failure, tensile failure, dilatant shear failure and grain crushing to define potential functions that indicate increased or decreased

probability of failure. Results give predictions that agree well with observation in the simple cases studied. A novel method for approximating

three-dimensional deformations is used to model the propagation of folds in the axial direction and it is found that this occurs rapidly and

allows constructive and destructive interference of propagating folds below a certain amplitude. This provides a means by which

perturbations may interact over a certain distance. Such a mechanism was an implicit requisite of classic fold theories, but its identity has

been obscure for three decades. It is shown that many small perturbations are needed to give patches of coherent folds and that few, large

perturbations give single arc folds.

q 2004 Elsevier Ltd. All rights reserved.

Keywords: Hydrocarbon reservoirs; Rock fracture; Multilayer folds

1. Introduction

Folds are host to many hydrocarbon reservoirs in diverse

tectonic settings. The purpose of this paper is to examine the

application of mechanical approaches to predict the

development of buckle folds the better to assess not only

the bed-scale damage within reservoir units but also to

understand the three-dimensional evolution of fold trains.

Bed-scale damage can play a critical role in the

performance of hydrocarbon reservoirs through modifi-

cation of the porosity and permeability of the original rock.

It has long been recognised that this damage can have a

variable impact. Simple open fractures may enhance

permeability but grain crushing and clay smear can create

permeability barriers. Further, the timing of damage events

relative to the diagenetic history is critical in determining

the long-term character of the damaged bed and even its

response to progressive deformation. Much of this may be

difficult to resolve in the subsurface although these features

are well understood from outcrop studies. Given

these complexities, there are increasing attempts to relate

bed-scale damage to the larger-scale structure that might be

resolved on seismic data.

Many attempts take a kinematic approach whereby the

final geometry or the inferred geometric evolution of a fold

is used to predict fracture damage within beds. Outcrop

studies have tested this approach with varying degrees of

success. For example, Hennings, Olson and Thompson

(2000) studied jointing patterns, inferred to be tectonically

produced fractures, around a broad anticline related to a

basement-involved structure in Wyoming. The intensity of

damage correlated reasonably well with the finite curvature

of beds. Contrast this result with that of Jamison (1997),

working on an anticline in the foothills of the Canadian

Rockies, using mineralised extension veins as proxies for
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fractures in the subsurface. On the backlimb of the structure

the strikes of extension fractures were parallel to the

large-scale fold hinge. However, the fractures on

the forelimb showed highly variable orientations. Further-

more, there was no correlation in the intensity or aperture of

fractures with structural position. In yet another example,

Hanks, Lorenz, Teufel and Krumhardt (1997) in their study

of damage in the Lisburne Group of the Brooks Range,

Alaska, found that a key control on the orientation and

intensity of fracture, mineralised and open, late joints, was

lithology. They also suggested that flexural slip was the key

mechanism of large-scale folding that influenced bed-scale

damage, a conclusion supported by the work of Couples and

Lewis (1998) elsewhere. For these workers we can infer that

fold limbs are likely to show greater strain, and therefore

more bed-scale damage than the hinge areas of folds.

If correct then curvature is likely to be of subordinate

importance to interlimb angle and, for upright folds, its

proxy of bed-dip.

The lack of a clear picture might suggest an alternative

approach to the problem. The papers cited above all report

the results of field studies where the deformation is the final

finished product of the deformation history. Yet the fracture

processes affecting reservoir quality and fluid flow

properties are mostly the result of particular stress

conditions and may not in themselves account for a large

amount of finite strain. Consequently we propose an

approach based on estimates of the stress history of

folding to gain an indication of when and where fracture

processes may occur.

Fracture embraces only part of the possible array of

deformation mechanisms in rocks. The presence of

syntectonic mineralisation along fracture points to accom-

panying dissolution–reprecipitation processes operating in

tandem with cataclasis. These processes will make an

important contribution to the rheological properties of

the rock which can be represented by the field term

‘competence’.

There are key differences in the finite pattern of damage

associated with buckle folds and forced folds, as discussed

by Cosgrove and Ameen (2000). The general style of the

fracture pattern associated with buckle folds is discussed by

Price and Cosgrove (1990) but the timing and evolution of

fracture arrays are less well-understood. Many workers

suggest that the primary control on fracture density in folds,

regardless of the type of folding, is curvature (e.g. Lisle,

1992). However, other variables play a role, such as

lithology (e.g. Ericson, McKean, & Hooper, 1998).

Many compressional terrains show evidence for wide-

spread development of buckle folds (e.g. the Zagros

deformation belt of Iran; Satterzedah, Cosgrove, & Vita

Finzi, 2000) where folding is the response to end loading of

originally subhorizontal layering. Geometrically this style

of deformation, when decoupled mechanically from

underlying basement, has also been termed ‘detachment

folding’. There are numerous recent accounts of detachment

folding, reviewed by Mitra (2002), where the large-scale

structural geometry, e.g. wavelength, is discussed

principally in kinematic terms. However, previous studies

of buckle folds emphasise the importance of geometric

variables together with rheological parameters, such as

competence contrast, in fold development. Therefore to

understand not only the large-scale evolution of fold belts

but also the consequences of deformation, such as fracture

patterns and fracture density, demands a mechanical

approach.

Fold development has been studied using analytical

solutions (Biot, 1961; Fletcher, 1974; Ramberg, 1960;

Smith, 1977), physical analogue models (Cobbold, 1975;

Mancktelow & Abbassi, 1992) and numerical methods

(Cobbold, 1977; Dieterich & Carter, 1969; Williams, 1980).

The analytical approaches are valid for the initial phases of

folding and provide understanding of how wavelength and

rate of growth of folds are related to the physical properties

of the rocks. The development of folds to finite amplitude

can be studied by physical analogue models or numerical

methods. Both physical analogue models and numerical

modelling show how the geometric forms of folds evolve

with increasing applied strain, but only numerical

models give quantitative results for such things as the stress

evolution.

A description of buckle folding is presented below. First a

summary of the classic analytical buckling theory is

outlined and some important results cited. These results

are applied and extended by numerical studies, which aim

principally to understand the mechanics of finite amplitude

fold development. This part of the paper consists of two

themes:

(1) Deriving the stress history of folding as an aid to

finding areas of increased fracture likelihood.

(2) Understanding the way in which folding rock masses

interact with rocks without folds or with faults.

2. Analytical fold theories

First we will review some results from analytical fold

theories, which make great simplifications in the geometry

of folds studied but which come to some fundamental and

significant results. The analytical fold theories of Biot

(1961) and Ramberg (1960) investigate the conditions under

which folds form in a single stiff layer embedded in a less

stiff matrix. They find that in order for folds to grow there

must be small amplitude initial perturbations of the layering

and that a perturbation of a given wavelength and amplitude

A0 will grow according to A ¼ A0 expðaeÞ; where A is the

amplitude after a strain of e has been applied and a is a

constant. Low values of alpha give a slower growth of the

fold, higher values give a higher rate, but there is always an

ever increasing rate of growth of the fold with applied

strain which is determined by the exponential function. It is
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the exponential nature of fold amplitude growth that

distinguishes it from passive folding, such as fault-bend

folding associated with thrust ramps. Mechanically it means

that the driving force of folding increases with the amplitude

of the fold.

The constant alpha is a function of both the contrast in

stiffness between the layer and its matrix and the

wavelength. There is a particular wavelength for which

alpha has a maximum and from which it falls quite sharply

to longer and shorter wavelengths. In the classic fold theory

it is postulated that all wavelengths are present as initial

irregularities in the layer, but that only those close to the

maximum are amplified significantly quickly so that

the result after a finite deformation is folds close to

that wavelength, called the dominant wavelength. This

postulate implies that there is a means by which pertur-

bations can communicate over a distance in the rock so that

they can interfere constructively and destructively to give a

coherent patch of folds in the rock. This means of

communication is one of the themes of this paper and a

possible candidate is presented below.

In addition to folds developing in a single layer in a less

stiff matrix, there are other mechanical situations that lead to

folding governed by an exponential growth of amplitude

with applied strain. Two examples are the folding of

sequences of alternating stiff and less stiff layers in an

approximately similar manner and the development of folds

within a layer of homogeneous, anisotropic material.

The former example is very useful in natural folds as most

sedimentary rock sequences approximate to sequences of

strong and weak rocks: sandstones and shales in turbidites or

alternations of limestones and marls in the Mesozoic of the

Alpine – Himalayan belt, e.g. the Zagros mountains.

There exist analytical solutions for these cases also

(e.g. Biot, 1965) and the solutions are very similar to

those for single layers.

3. Simple numerical models of folds

The insights gained from analytical solutions can be

extended to finite amplitude folds by carrying out some

simple numerical modelling. The work reported here uses

the finite element method, a few technical details of which

are given in Appendix A, to calculate the instantaneous

deformation in a simplified geometrical model of a fold.

Fig. 1 shows the development of a fold profile calculated

using the finite element method. The successive profiles

show an evolution of shape from the original sinusoid to a

shape with straight limbs and sharp hinges as the amplitude

increases. The dashed line in Fig. 1 is the locus of the crest

or hinge point of the fold calculated on the basis of the initial

exponential growth as predicted by the analytical approach

and confirmed by numerical modelling for the early stages

of the run. The exponential growth locus deviates from the

actual locus at the point where further exponential growth

would lead to extension of the arc of the fold. Results of

several runs of varying exponential growth rates, showing

just the hinge point loci, are shown in Fig. 2. The actual

profiles have been left out to avoid cluttering the diagram.

They all show the same evolutionary trend as the profile of

Fig. 1. The more weakly developing folds have a greater

amount of layer shortening and a longer exponential growth

phase than the more strongly developing folds. The dashed

lines in Fig. 2 are arcs centred on the inflexion point, which

is located at the origin of the diagram. It can be seen that the

loci of the hinge lines tend to run parallel to the arcs

after the exponential stage is over. This means that in this

stage of the fold development the limbs of the fold

are rotating as if the fold hinges were behaving as door

hinges. The limbs simply rotate with no length change and

the hinges bend. This behaviour was assumed to occur at all

stages of fold development in the model of Ramsay (1974).

Fig. 1. Development of a fold profile in an internal buckle. The profiles are

quarter wavelength portions of the fold from inflexion point on the limb

located at the origin of the graph to the hinge point at the right. The lowest

profile is the initial sinusoidal fold and the higher curves show the shape at

successive steps of imposed deformation. The dashed curve on the left is the

locus of the hinge line for a continuous exponential growth.

Fig. 2. The thick lines are the loci of hinge points for several fold

simulations with varying strengths of exponential growth. The long-dashed

lines are arcs on the origin of the graphs, which is also the inflexion points

of the fold profiles.
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In summary, these results indicate that at low amplitude

the fold limbs are shortened, but that this shortening

becomes less and less as the fold shape evolves to that of a

chevron fold. It will be shown later that this transition takes

place with a very sharp reduction in compressive stress

parallel to the layering. Mechanically the fold instability

comes from a progressive transfer of strain from layer

parallel shortening to layer parallel shear. As the fold

amplitude increases the way in which a bulk shortening can

be taken up by layer parallel shear becomes more and more

favourable: hence the exponential nature of the fold growth.

3.1. Methodology for predicting fracture

The use of numerical models to predict areas of deformed

rocks that are more prone to fracture requires a carefully

devised procedure. For our studies we have followed a

three-stage protocol:

(1) The identification of a simplification of nature that is

sufficiently complex to capture the essential behaviour,

but sufficiently simple to be realised.

(2) Use the simplification to calculate stress distributions.

(3) Take the stress distributions and apply them to rocks

with brittle deformation behaviour.

These steps will be applied to the problem of identifying

fracture prone regions in rock sequences consisting of

alternations of more and less competent rock layer in the

next three sections.

3.2. Simplifying nature

Most natural active buckle folds occur in alternating

sequences of more and less competent rock layers. A further

simplification comes from the observation that fold

amplitude and profile shape vary very slowly with distance

along the axial plane and the folds can be approximated as

similar folds without loss of accuracy, see for example,

Casey and Huggenberger (1985). As the folds develop the

growth of amplitude allows the shortening deformation,

initially parallel to the layers, to be taken up by shearing of

the incompetent material. This is the flexural slip or flexural

flow mechanism of Ramsay (1967). Consequently the fold

development in this situation can be modelled by

considering the deformation of two layers of different

Newtonian viscosity with periodic boundary conditions on

the mid-line of one of the units, see Appendix A for details.

It is certain that the rheology in nature is not linear viscous,

but models on this basis are able to reproduce the shapes and

finite strain patterns of natural folds (Williams, 1980).

The important feature is that one layer is hard to deform and

supports a high stress while the other is easy to deform.

This strength variation must exist regardless of the

rheological simplification used for modelling.

3.3. Stresses in multilayer folds

Using the model abstraction presented in the previous

section the finite element method can be used to model the

growth of finite amplitude folds from small initial

perturbations. The values of the principal stresses and

their orientations can then be calculated at all points in the

model at each stage of the deformation. The technical

details are presented in Appendix A. Results are presented

below for various steps in the deformation. Constant strain

rate is imposed on the bulk region containing the folds.

Each step in the solution corresponds to a time interval and

the strain accumulated is given by:

e ¼ dDt ð1Þ

where e is natural strain, d is the imposed differential strain

rate and Dt is the time interval. The natural strain defined by

e ¼ lnðl=l0Þ where l is the strained length and l0 is the

unstrained length. Each step corresponds to the imposition

of a differential natural strain of 0.1 on the boundaries,

where the differential natural strain is the difference of the

extensional natural strain in y and the shortening natural

strain in x:

3.4. Rock fracture and its application to the stress results

As a preliminary to a more detailed exploration of stress

histories in folding the relationship between stress and rock

fracture will be outlined, see Paterson (1978). The simplest

way a rock can fracture is by tensile failure. For this to occur

in the subsurface the pore pressure must exceed the least

principal stress. A function of stress which indicates

potential for tensile fracture, or for the opening of existing

fracture planes is the least principal stress. For compressive

brittle failure functions of both principal stresses are needed.

Fig. 3 is a simplification of the failure envelope for porous

Fig. 3. Simplified failure envelope for porous rocks. The graph is a plot of

normalised differential stress against normalised effective pressure. The

failure line rises at low P=pp; reaches a maximum and than falls. Simplified

from Wong et al. (1997).
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rocks, taken from Wong, David and Zhu (1997). The graph

is normalised differential stress against normalised effective

pressure, which is the actual confining pressure minus the

pore fluid pressure. The normalisation factor, pp; is the

crushing strength of the rock in the absence of differential

stress. At low values of confining pressure there is a positive

dependence of failure strength and confining pressure and

the mode of failure is dilational. This mode of failure is the

same as that for dense rocks with microcracks. At high

confining pressures the strength decreases with increasing

confining pressure, the failure is compactional and is

dominated by crushing of grains as a result of high point

contact loads. The fracture of rocks in natural deformations

is extremely difficult to predict, as it depends on many

irregularities in the deformation, such as, among others,

variations in pore pressure or local heterogeneities in rock

properties. Consequently it is sought here to give an

indication of the tendency of the rock to fracture as a

function of stresses calculated from continuum models.

This is achieved by defining fracture potential functions

which will give an indication of likelihood of fracture.

One potential function is defined for the low confining

pressure portion of Fig. 3. Using data from Paterson (1978)

the following function is defined:

Pot ¼ 4:5 differential stress 2 5 mean stress ð2Þ

This function increases to the upper left of the plot in

Fig. 3.

Fig. 4. The value of the most compressive principal stress for steps in the development of a multilayer similar fold with a viscosity ratio of 10. One quarter of the

wavelength is shown and the top of each picture continues on the bottom. The competent layer is in the middle. The short lines give the orientation of the least

compressive principal stress. The numbers against each picture give the number of steps in the model. The stress scales are given nominally in Megapascals.
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The potential for compactional failure is defined as

Pot ¼ differential stress þ mean stress ð3Þ

This function increases to the top right of Fig. 3.

Results of computations are shown in Figs. (4)–(9). Fig. 4

shows the development of the most compressive principal

stress for the model with a viscosity ratio of 10. This stress is

the compressive stress which acts parallel to the layer

boundaries and is the main driving force of the folding

instability. The most striking feature of the development of

this stress with fold growth is the strong fall of stress in the

competent layer from in excess of 500 Units in step 6,

through 350 Units in step 8, 200 in step 10 to 100 in step 12.

In fact, the main fall occurs before step 6. This is a

consequence of the exponential growth of the fold changing

the mode from layer parallel shortening to pin-jointed

behaviour. In a general layered stack of rocks the amplitudes

of folds varies up and down the axial plane trace in the

profile section. If the competent/incompetent layer pair

under consideration were the one in which the amplitude

developed quickest, the fall in layer parallel compressive

stress would result in load transfer to the rocks in the lower

amplitude folds, accelerating fold growth or promoting

brittle shear failure to cause thrusting. For the competent

unit, layer parallel stress remains high in the inner arc of the

hinge, which becomes progressively narrower with imposed

strain. This will tend to give shear failure in the inner arc, as

discussed below. In the incompetent unit the compressive

stress shows a trend from more compressive in the limb to

less compressive in the hinge. This is a consequence of

material being squeezed out of the limb and into the hinge.

This effect becomes stronger with increasing limb dip and it

is caused by space problems in the limb area: the vertical

extensional strain in the competent layer comes from its

simple rotation about the inflexion points, with minimal

internal strain. This strain rate soon becomes greater than

that required for both competent and incompetent unit and

hence the incompetent material is expressed. The variation

of compressive stress reflects the variation in

pressure consequent on the transport of incompetent

material to the hinge.

Fig. 5 shows the variation of the less compressive

principal stress for a viscosity ratio of 10 in the hinge region

for a multilayer fold of viscosity ratio 10. This stress

component acts perpendicular to the layer boundary and its

Fig. 5. The value of the least compressive principal stress for step 12 in the

development of a multilayer similar fold with a viscosity ratio of 10. Details

of stresses in the hinge region. Tensile failure is most probable in the

incompetent unit with layer parallel fracture.

Fig. 6. The value of the least compressive principal stress for step 12 in the

development of a multilayer similar fold with a viscosity ratio of 40. Details

of stresses in the hinge region. The most probable location of fracture is on

the outer arc of the competent layer with the fractures perpendicular to

layering.
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behaviour is almost completely determined by the extrusion

process described in the last paragraph. The general level of

this stress component in the competent unit is less tensile

than in the incompetent unit. This is the effect on the mean

stress of the high value of the more compressive stress.

The highest value occurs in the incompetent unit on the

inner arc of the hinge and it gives a tendency to produce

fractures parallel to the layer boundary.

Fig. 5 also shows the effect of bending the competent

unit, but only in the outer three-quarters of the layer: the

stress goes from around 50 Units at one-quarter height from

the inner arc to around 65 Units at the outer edge. The stress

in the lower quarter of the layer is determined by the high

value in the incompetent unit. Detail of the distribution of

the least compressive principal stress for a multilayer with a

viscosity ratio of 40 is shown in Fig. 6. The picture is

dominated by the strong maximum at the outer arc of the

hinge, showing a tendency to form tensile fractures

perpendicular to the layering, i.e. perpendicular to the

lines giving the line of action of the least compressive

principal stress. The value of this stress component in

the incompetent unit is a consequence of extrusion of

incompetent material from limb to hinge. As in the case of

the model with a viscosity ratio of 10 the least compressive

stress on the inner arc of the fold is also made more positive

by the effect of the incompetent unit value.

Fig. 7. The value of the fracture potential for steps 3 and 12 in the

development of a multilayer similar fold with a viscosity ratio of 40. One

quarter of the wavelength is shown and the top of each picture continues on

the bottom. The competent layer is in the middle. The numbers against each

picture give the number of steps in the model. The stress scales are given

nominally in Megapascals, but the absolute values are not very meaningful.

Higher positive values of this function of stress, the fracture potential,

indicate a greater likelihood of shear failure. Failures would occur in

conjugate sets at plus and minus 308 to the layering, except in the outer arcs

of the hinges, where they would be at plus and minus 608 to layering.

Fig. 8. The value of the fracture potential for step 12 in the development of a

multilayer similar fold with a viscosity ratio of 40. Details in the hinge

region.

Fig. 9. The value of the crushing failure potential function of Eq. (2) for

steps 6 and 12 in the development of a multilayer similar fold with a

viscosity ratio of 10. One quarter of the wavelength is shown and the top of

each picture continues on the bottom. The competent layer is in the middle.

The short lines give the orientation of the least compressive principal

stress. The numbers against each picture give the number of steps in the

model. The stress scales are given nominally in Megapascals, but the

absolute values are not very meaningful. Higher negative values of this

function of stress indicate a greater likelihood of grain crushing failure.
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Values of the fracture potential function of Eq. (2) are

shown in Fig. 7 for the multilayer model with a viscosity

ratio of 40. The value is dominated by the high layer parallel

compressive stress in the early stages and develops maxima

both on the inner and on the out arc in later stages when the

bending of the hinge becomes strong. Detail of the hinge

area is shown in Fig. 8. The shear failure planes lie at plus

and minus 608 to the direction of the least compressive

principal stress as given by the short lines in Fig. 8.

Thus thrust faulting will form in the inner arc and normal

faulting in the outer arc.

Fig. 9 shows the variation of the potential function for

crushing failure of Eq. (2) for steps 2 and 12 in

the development of similar multilayer folds for a viscosity

ratio of 10. A value for the normalising factor pp has not

been incorporated into the plot and the low stresses of the

incompetent layer suggest that crushing would not occur

there. The values in the competent unit are dominated by the

value of the layer parallel compressive stress shown in

Fig. 4. The high values of this component in the low

amplitude steps indicates a strong tendency to crushing

failure in a large proportion of the layer at these stages with

a concentration in the inner arc at higher amplitudes.

A constant end load boundary condition would again reduce

the tendency to distributed crushing at early stages, leaving

crushing in the inner arc of the hinge as the main prediction

of these results.

The main conclusions that can be drawn from these

results is that bending of the hinge dominates in showing

likely locations of fracture by tensile failure, brittle shear

failure or grain crushing, an expected result considering

that the stress distribution is almost the same as that for a

bending beam. This further supports the importance of

competent bed curvature as a determinant of the fracture

distribution. This expected result can be used to validate

the technique for its subsequent use in more complex

situations such folds developing in rotational deformation

histories and folds developing in interaction with faults.

Some more subtle indicators come from such features as

the extrusion of incompetent material in the low viscosity

ratio case.

A very strong feature of these results is the very sharp

reduction in the layer parallel stress as a fold grows in

amplitude. This means that the bulk effective strength of

folding rocks varies enormously and this has important

consequences for the interaction of folding and, for instance,

faulting as well as for stress effects of load transfer within

fold packets.

4. Along axis propagation of folds

Mechanical modelling can also be applied to understand

the large-scale evolution of folded terrains. In these

situations it can be important to evaluate how folds interact

in three dimensions—for example to assess the relative rates

of fold amplification and lateral propagation in the evolution

of four-way closure. Furthermore the approach can yield

insights on large-scale stress histories over the evolution of

deformations that may in turn impact on assessments of

dynamic fracture systems.

For example, the geomorphological study of the folding

in the Zagros indicates that folds several wavelengths long

nucleate and then grow by increase in amplitude and

propagation along the axis. Propagation appears to stop

when a packet of folds collides with a neighbour. Thus the

understanding of the mechanics of the folding and the

modelling of the stress history of units in the folds requires

an understanding of the processes of nucleation and

propagation. This study was undertaken approximating

the folds as similar folds with vertical axial planes,

subhorizontal axes, and of infinite extent in the vertical

direction, forming in a material with anisotropic defor-

mation properties. In this approximation the geometry of

the folds can change in the horizontal dimension but folded

surfaces separated from one another by vertical displace-

ment have the same geometry. This symmetry can be

exploited in the formulation of the finite element program,

see Appendix A.

The classic folding theories of Biot and Ramberg

envisage the development of a dominant wavelength by

amplitude selection of the fastest growing wavelength from

initial perturbations in which all wavelengths are present.

This mechanism requires a means by which perturbations

separated in space can interact. Cobbold (1977) and Hunt,

Mühlhaus and Whiting (1997) propose that elastic effects

are important in this process, but have not demonstrated that

they are important in geological deformations with slow

strain rates and low viscosity materials. One of the main

motivations for the project reported here was to explore the

possibility that interactions in the axial direction of folds can

provide the means by which perturbations interact. Models

were run with various values of the degree of anisotropy, m:

A value of one third for m corresponds to an isotropic

material. A value of m less than one third means that the

material is easy to shear in the plane parallel to layering. The

growth of amplitude with imposed strain follows the result

from fold theory:

A ¼ A0 expðaeÞ ð4Þ

where e is the imposed logarithmic strain, a is a constant, A0

is the initial amplitude and A is the current amplitude. The

constant a depends directly on the degree of anisotropy of

the material. The rate of propagation of an initial

perturbation along the fold axis is shown in Fig. 10. A

persistent profile is rapidly established. The profile consists

of an exponentially rising portion in front followed by a

more or less linear portion and finally a portion of

progressively slower growth. Only the exponential portion

will be considered further in this paper. The profile spreads

along the layer very rapidly with imposed strain and with a

rate dependent on the degree of anisotropy.

M. Casey, R.W.H. Butler / Marine and Petroleum Geology 21 (2004) 933–946940



Fig. 11 shows folds propagating towards one another

with an offset of two units, that is, one fifth of a wavelength,

for steps 4, 5, 6 and 8. In step 4 there is no perceptible

interaction at the contour intervals chosen. In step 5

interaction becomes apparent in a bending away of the

contour to meet the other fold. In step 6 a connecting ridge is

being established which is clearly to be seen in step 8. The

folds at the point where the amplitude is 0.2 for step 6 do not

Fig. 10. Crest line profile of an anticline for two models runs. (a) anisotropy 0.1, step length 0.1, (b) anisotropy 0.05, step length 0.05.
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shift in their crest and trough lines in the subsequent history

of the folding. This suggests that there is a cut off in

amplitude for interaction. If we take this to be 0.2 on a

wavelength of 10.0 this can be expressed as a cut-off

amplitude to wavelength ratio of 0.02. The numerical

experiments reported here can give some insight into the

extent and nature of interaction between natural initial

perturbations and allow a discussion of several interesting

problems.

The result that the rate of growth of amplitude and the

rate of propagation of a perturbation along the axis both

depend on the degree of anisotropy means that the same

perturbation will spread and grow in an identical manner

regardless of the degree of anisotropy. A consequence of

this is that aspects of folding, such as the existence and size

of coherent patches of folds, is not dependent on anisotropy.

A further consequence is that the control on these aspects

must be predominantly the initial perturbations.

The interaction of folds reported above indicates the

existence of an upper limit of amplitude to wavelength

ratio for interaction. This means that interaction to establish

coherent patches must occur between this level and the

average size of the initial perturbations. If this interval spans

many orders of magnitude the interaction can be long-range,

so that folding of almost perfectly layered rocks or rocks

with a regular fabric can be expected to have relatively large

Fig. 11. Contour plot of fold development for a fold with anisotropy m ¼ 0:001 and a layer thickness of n units. The numbers refer to step number and the steps

are of 0.1 bulk logarithmic strain. The fold at the right hand side propagates left-wards with an offset of 2 units.
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volumes of coherent folds. On the other hand regions

containing single anticlines would be expected to have

a small number of large perturbations, such as syn-

sedimentary faults. So the regularity of folding is an

indicator of the perfection of layering before folding.

Although the interaction of folds is independent of

anisotropy, the amount of imposed strain required to

achieve the interaction is still dependent on this parameter.

As all the interaction is expected to take place below an

amplitude to wavelength ratio of 0.02 the strain required

will be recorded in the amount of layer parallel shortening

observable in competent units.

The area in front of a propagating fold will have higher

horizontal stresses because of the reduced load bearing

capacity of the rocks where the fold is growing strongly. In

addition the rate of fold growth is slowed in the region of

interference where two out-of-phase folds meet as they

propagate. This will lead to stress concentrations, increasing

the likelihood of fracture.

5. Discussion

The purpose of this paper has been to illustrate that

mechanical approaches are necessary in order to make

sensible predictions, of not only the large-scale evolution of

buckle folds systems but also the distribution of fracture

within folded units. Buckle folds are important constituents

of compressional belts such as the Zagros mountains of Iran

where the stratigraphy consists of alternating competent and

incompetent layers. Buckling is likely to be important also

in deep water fold belts made up of alternating sand/shale

packages.

Our conclusions support traditional views (e.g. Biot,

1961; Ramberg, 1960) where geometric and mechanical

evolution of buckle folds relate to the layer thickness and to

the relative strength of the layers, as expressed qualitatively

as competence. Note that this view contrasts with purely

kinematic descriptions of buckle folds (sometimes referred

to as detachment folds) where no rock properties are

considered (e.g. Mitra, 2002).

Our principal conclusions are those that are consistent

with numerous existing empirical results—usually that the

hinge curvature has an important influence on fracture and

that outer arc fracture is likely to open during buckling.

However, the stress history of fold hinges is complex so that

while the propensity to fracture is predictable, the timing of

those fractures during fold development is not predictable

from purely empirical or kinematic approaches. This can be

a serious issue for hydrocarbon reservoirs which are charged

during fold amplification. Differing failure modes are

sensitive to different factors in the stress state of layers.

Consequently models are required that make prediction of

stress evolution during folding.

Folds develop from a broad, low amplitude perturbation

to more localised, pin-jointed type behaviour. This

transition represents a significant reduction in the strength

of the folding layer. Consequently the development of folds

will impact on the propensity of a rock package to fault.

However, at high bulk strains where hinges become tight,

the bulk strength increases again, causing the fold

deformation to migrate elsewhere or for the folded units

to finally fault.

Our study of fold packages on a layer scale has yielded a

further series of conclusions. Single isolated folds are likely

to have developed from isolated large perturbations.

Obvious candidates for these initial features are inherited

structures such as early normal faults or abrupt facies

changes within competent layers. In contrast, large domains

of coherent folds are indications of evenly distributed small

initial perturbations.

With large folding rock volumes, the stress state within

part of the rock volume is strongly influenced by what is

happening around it. This can include the rocks adjacent to

rapidly amplifying folds and with folds that propagate into

each other. Further investigation is required to examine the

role of these larger scale variations on the evolution of local

fracture patterns and the prediction of fracture in dynami-

cally evolving systems.
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Appendix A

A.1. Finite element analysis

In this appendix some technical details of the finite

element methods used are given. The first section describes

the modelling of two-dimensional viscous deformations and

the way in which finite deformations are built up; the second

treats specific aspects of modelling sequences of competent

and incompetent layers, and the third covers an extension to

a quasi-three-dimensional situation.

A.1.1. Modelling simple two-dimensional fold development

For finite element analysis a simplified abstraction of the

natural structure and boundary conditions is used.

An example is shown in Fig. A1. The region of the model

is subdivided into small elements each of which possesses a

set of points called nodes, see Fig. A2. Boundary conditions

are based on a constant strain rate being applied to the

boundaries and the actual velocities of boundary nodes are

calculated from the imposed velocity gradient matrix and the

location of the node. The instantaneous deformation is

described by the velocities of each of the nodes, which
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reduces the infinite number of degrees of freedom in the real

fold to a manageable number in the model. The velocities at

points within elements are prescribed functions of the values

at the nodes. These prescribed functions are polynomials of

low degree, quadratic in the case of the elements in Fig. A2.

Strain rates can be obtained from the gradients of the

velocities and stresses can be obtained from strain rates by

application of the rheological equations. For this study a

nearly incompressible linear viscosity was used, derived

from the equivalent elasticity relations given in Zienkiewicz

and Taylor (1994). Isotropic or anisotropic properties are

used as necessary. The finite element method has

the advantage that it can find solutions for complex

geometries, so that there is no constraint on the fold shapes

that may develop. The geometry of the model at any stage in

the computation is defined by the coordinate values of the

nodes. The finite element solution yields the velocities of

the nodes and the velocities are the time rate of change of the

coordinates. This means that to follow the evolution of

the geometry of the model is to solve a system of

ordinary differential equations for the nodal coordinates.

The analytical approach shows that the solution is exponen-

tial, so the solution method chosen must be able to cope with

this sort of solution. A fourth order Runge–Kutta (Conte &

De Boor, 1980) method was used. Such a solution method

proceeds in time steps, with four finite element solutions per

step. The accuracy of the method allows time steps

corresponding to large imposed strain increments to be used.

A.1.2. Multilayer folds

A simplification can be made in order to estimate what

possible stress variations may be found in the competent

layers, as shown in Fig. A3. In this simplification the finite

element mesh is set up so that the nodes on the top of the

model are in equivalent positions to those on the bottom,

and in this case they in the middle of the incompetent layer,

Fig. A3. To maintain a similar profile for this line of nodes

the velocities of the top nodes differ by a known amount

from those at the bottom. This condition can be used to give

the effect of repeating the model in the vertical direction to

infinity upwards and downwards. The folds are idealised to

have mirror planes of symmetry on the axial plane and

points of diad rotational symmetry at the inflexion points of

the middle surfaces of the layers. These symmetry

conditions can be used to further reduce the portion that

needs to be modelled, see the outlined region in Fig. A3.

A constant strain-rate was imposed on the boundaries, each

finite element solution allows the velocities of nodal points

across the finite element mesh to be determined for any

geometry of the model, as defined by deformed state

coordinates of the mesh. The development of the model as a

function of imposed finite strain was calculated using fourth

order ordinary differential equation solving methods as

above. The step length was a differential logarithmic strain

of 0.1. The boundary condition of constant imposed strain

rate is an end-member condition. The results were obtained

using a multilayer in which each component has the same

thickness and the viscosity of the competent units was 10 or

40 times that of the incompetent units. The finite element

mesh consisted of 797 nodes and 240 elements. The initial

wavelength was 35 times the layer thickness. The initial fold

had an amplitude to wavelength ratio of 0.0025, giving a

maximum limb dip of 18.

A.1.3. A quasi-three-dimensional extension

For this part of the study the folds are considered to be

similar folds with vertical axial planes, subhorizontal axes,

Fig. A1. Schematic diagram of a fold that develops entirely within an

anisotropic homogeneous medium. The fold is periodic in the horizontal

direction and has an amplitude growing from zero at the top and bottom of

the medium to a maximum in the middle. This structure is called an internal

buckle.

Fig. A2. Example of a finite element mesh used to solve the deformation in

an internal buckle.
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and of infinite extent in the vertical direction, forming in

a material with anisotropic deformation properties. In this

approximation the geometry of the folds can change in the

horizontal dimension but folded surfaces separated from

one another by vertical displacement have the same

geometry, so that a two-dimensional mesh of special

elements can be used, one of which is shown in Fig. A4.

Each node of the mesh has three degrees of freedom

corresponding to the three spatial dimensions, so that the

modelled structure can develop effectively in three dimen-

sion, subject to the constraint of constant geometry in the

vertical direction.

The model used is shown schematically in Fig. A5.

It consisted of 501 nodes in 150 eight-node quadrilateral

elements and was initially 30 units in the axial direction and

10 units along the folded layers. The initial perturbation was

applied as a sine curve of full wavelength with an amplitude

of 0.01 at the left hand end of the model and decaying to

zero at x ¼ 10 units into the model. The decay of amplitude

was achieved using a quadratic function with zero slope at

x ¼ 10: The direction of constant geometry is parallel to z;

Fig. A3. The value of the mean stress for step 12 in the development of a multilayer similar fold.

Fig. A4. The element used to model quasi-three-dimensions. The element is

an eight-node quadratic element in two dimensions and linear in the third.

The condition that geometry remains constant in the third dimension allows

the virtual back nodes to be condensed out, leaving an eight-node element

with three degrees of freedom per node.

Fig. A5. The finite element model used to investigate along axis fold

propagation. The geometry of the folds varies in x–y but is constant in z: An

initial perturbation is applied which is shown in y–z section on the left of

and in x–z section below the mesh. The perturbation is sinusoidal in y: It is

given a small amplitude on the left edge of the model and is made to fall

linearly to zero, with continuous slope, after a short distance in x: The top

and bottom edges of the model have periodic boundary conditions. The left

and right edges of the model are fixed in x and free in y and z: The edges of

the model are planes of reflexion symmetry.
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so that the folds are similar folds of infinite extent in z:

The phase of the initial perturbation could be varied to

displace the initial perturbation in y; but always subject to

the condition that the point at which z ¼ 0 coincided with a

node. The boundary conditions on the left hand end were

that the nodal displacements (velocities) were fixed in x and

free in y and z except that one node with the value of the

initial perturbation equal to zero was fixed in all three

components. The plane bounding the left-hand of surface of

the model had zero shear stress. No constraint was placed on

the first derivative of displacement. The centre node of the

right hand end of the model was fixed was a centre of

inversion symmetry. The nodal displacements above and

below the centre node were linked in antisymmetry to give

the effect of extending the model a further 30 units to the

right with the symmetrically equivalent fold development

occurring. The top and bottom of the model were linked

with periodic boundary conditions. Appropriate

conditions were imposed on the gradient of displacement

to ensure continuity.
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