Sustainability Research Institute

SRI Briefing Note Series No. 19

Barriers to adoption of measures for addressing soil degradation across Europe: *Insights from the RECARE Project*

Edna L. Chinseu, Julia Leventon, Lindsay C. Stringer, Uche Okpara, Luuk Fleskens (With data inputs from all RECARE Case Studies)

October 2018

http://www.see.leeds.ac.uk/sri/

Barriers to adoption of measures for addressing soil threats across Europe: *Insights from the RECARE Project*

SUMMARY

Adoption of soil remediation measures is central to mitigating land degradation and achieving land resilience, yet barriers to adoption persist across Europe. Evidence from RECARE, an EU funded project on prevention and remediation of degraded soils in Europe, reveals that adoption barriers are linked to institutional, policy, cultural and technical issues. This briefing note offers ways forward for addressing these issues across Europe and beyond, highlighting the need for more training and education programmes, and the inclusion of incentives into remediation policies to motivate farmers and other land users.

Key Messages

- 1. Analysis of barriers across RECARE case studies show that institutional barriers are the most dominant factors affecting uptake of land management practices.
- 2. Findings show that poor dissemination of knowledge from research about remediation measures often lead to a lack of awareness among key land users and decision makers.
- 3. Certification of farm produce/products and provision of business-friendly market environments can motivate farmers to both adopt measures and engage the land more productively.

Introduction: Land degradation is one of the world's most urgent environmental challenges today, spurring global hunger and poverty, and contributing to climatic changes¹. Addressing degraded soils through soil remediation measures² is at the heart of efforts to achieve land resilience. Despite multiple remediation benefits from measures3. widespread adoption is yet to occur⁴. Specifically, little is known about adoption barriers across Europe, a continent with diverse soil threats and land use systems⁵. Examining barriers to adoption and identifying how to overcome them are important components of the EU-funded RECARE Project.

The RECARE project employed an innovative trans-disciplinary approach, integrating scientific and non-scientific knowledge to examine adoption barriers. The approach involved joint of remediation assessment measures in 17 case study locations in Europe, facing a soil range of threats. Stakeholder workshops enabled a participatory decision-making approach, ensuring active inclusion and participation of relevant stakeholders^{6,7}. This mutual approach enabled learning and co-generation of knowledge. Exchanging and integrating knowledge from different sources fostered understanding and input from stakeholders⁸.

Research design: Case Study stakeholders first identified promising measures with potential mitigate to environmental impacts and maintain soil functions (RECARE Report 15). Measures were subjected to field experiments to test their effectiveness (RECARE Report 17). Using participatory stakeholder workshops⁵, barriers to adoption were identified. Workshops involving a total of 194 participants took place during November 2017-January 2018, with Case Study leaders giving some flexibility to accommodate local circumstances. Since the emphasis of this task was to ensure that stakeholders and researchers did а joint assessment. Case Study leaders involved diverse stakeholders7.

Purposive sampling⁹ was used to identify workshop participants building on earlier stakeholder analyses. Workshops mainly focused on identifying barriers and constructing problemsolution trees¹⁰ using a participatory process. Data from workshops were collected and analysed using thematic content analysis⁹.

Analysis involved systematic evaluation of the problem-solution trees and workshop summaries. From this, seven categories of barriers were identified based on a predefined protocol (Table 1). Further content analysis enabled computation of related descriptive statistics on the identified barriers.

Table 1: Description of barrier category

Barrier	Description	
Category		
Institutional	Barriers are linked to	
	organisational processes and capacity (e.g. finances and	
	personnel), market failure,	
	limited collaboration and	
	dissemination; organisational	
	habits or tendencies.	
Policy	Absence of relevant policy	
	instruments; where policies	
	exist, enforcement is lacking	
Socio-	Mainly pertains to availability,	
economic	accessibility and cost of inputs;	
	economic risks and labour.	
Socio -	Unfavourable societal norms,	
cultural	values, and beliefs.	
Individual	Lack of knowledge, awareness,	
	interest; individual dislike for	
	remediation measures	
	evidence in negative	
	perceptions, unwillingness to	
112-1-21	cooperate.	
Historical	Barriers emanating from	
Table of a factor	previous experience.	
Technological	Relate to unfavourable	
	technology attributes e.g.	
	delayed benefits attributable to	
	the technology; complexity, incompatibility with current	
	incompatibility with current management system, limited	
	applicability, novelty of the	
	measure, measure not yet	
	proven or lack of proof of	
	provers or lack or proof or	
	(beneficial) effects.	

Results and discussion: Analysis of barriers across RECARE case studies show that institutional barriers are the most dominant factors affecting uptake of SLM practices (Figure 1; Table 2).

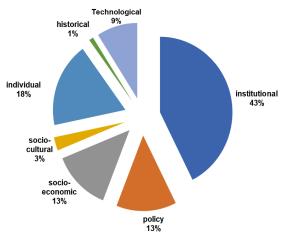


Figure 1: Distribution of barriers to adoption of measures in RECARE case studies

As institutional arrangements are central in defining conditions in which end-users operate¹¹, institutional inadequacies at higher levels of governance affect activity implementation at lower levels¹². For instance, findings from this study revealed that poor dissemination of knowledge from research led to a lack of awareness and information among key administrative authorities/decision makers. Given that national policy issues and/or budgets are finalised at higher governance levels, a lack of timely and adequate knowledge of the measure at such levels compromised inclusion of the measure into policies (i.e. for direct payments or subsidies).

It is unlikely that financial and human resources are adequately provided to support effective on-the-ground implementation or promotion of the measure. Inadequate knowledge of the measure, lack of incentives and insufficient dissemination or advisory support are highlighted as important barriers across the case studies. Also, inadequate resources limited research activities that could generate the knowledge necessary to convince users to adopt the measure. In addition, scepticism about performance and long-term effects of remediation measures prevent successful adoption.

Limited interaction and collaboration among key stakeholders represent a common barrier across RECARE case studies. This constrained knowledge cogeneration, dissemination and informationsharing^{13,14}. This not only undermines creation awareness about of availability, accessibility, utilisation and performance of promising measures, but also prevents learning from end-users. As 'learning by doing' is the ideal in technology transfer, greater involvement of users/land owners in research and dissemination is a prerequisite. as it re-enforces local ownership¹⁶, which is necessary sustained adoption is to be achieved.

Absence of remediation measures in policies, poor integration of the measures into policies, and/or policy incoherence emerged as common barriers cited by workshop participants. Findings reveal that where remediation measures are not included in policies for subsidies and direct payments, farmers or land managers are usually not interested in implementing such measures, especially when strong motivation for using sustainable land management measure is lacking.

As farmers/land managers are often driven by immediate direct gains attributable to the technology¹⁶, they prioritise measures that qualify for subsidies and are reluctant to take up measures that may not deliver benefits in the short term. Therefore, exclusion of promising soil remediation measures from subsidies and/or direct payments deters farmers from adopting them. At the same time, incoherence in policies discourages land users/managers from adopting some measures, for instance where adoption of the measure is not compatible with the current management system, or perhaps if the trade-offs are not well known.

Table 2: Summary institutional and policy barriers

Description of institutional barrier	Illustrative case study
Limited institutional	Spain, Greece,
support: no markets,	Switzerland,
unclear allocation of	Sweden, Iceland
responsibilities	
Benefits of the measure	Portugal,
among key decision	Poland, Sweden
makers is less known	
Insufficient field trials	Greece, UK,
and demonstration of	Portugal,
success stories of the	Norway
measure	
Poor knowledge transfer	Guadiamar, Italy
to users; limited	Portugal, Poland
education; authorities	Slovakia,
not appreciating extent	Cyprus, Norway,
of the issue	Iceland,
	Canyoles
Lack of consensus to	Italy, Iceland
facilitate use of the	
measure; bureaucratic	
bottlenecks	
Limited efforts to learn	Canyoles,
from users, and	Iceland
incorporate their views	
about implementation of	
measures	
Inadequate financial and	Romania, UK,
human resource	Sweden, Norway
capacity of relevant	
organisations and	
institutions; programmes	
compete for resources	
Description of policy	
barrier	
Measure not facilitated	Switzerland,
by existing policies;	Portugal,
measure not specifically	Sweden,
included in policies;	Norway,
measure falls outside	Slovakia, UK
the remit of conventional	
agricultural advisory	
services; lack of policies	
to enforce the measure	
Lack of subsidies/direct	Greece, Sweden,
payments for the	Netherlands,
measure/ risk of fines	Slovakia
Poor integration (gaps)	Slovakia, Cyprus
and inconsistency of	,
policies	
Perceived exclusion of	Canyoles
farmers' views in policies	

The findings suggest that institutional improvements are needed across knowledge co-generation and dissemination, education and training,

collaboration and more active stakeholder engagement. Thus, greater effort needs to be directed toward resolving institutional barriers at various scales to aid adoption of promising soil remediation measures across Europe.

Proposed solutions to the adoption barriers: Workshop participants identified the following strategies to address barriers to adoption of soil remediation measures across RECARE case studies.

- 1. **Transdisciplinary** approach to improve collaboration and coordination: This involve can collaborative work among relevant local gatekeepers, NGOs, and government agencies to both support actions and continuity of adoption efforts. widespread support for adoption inherently involves diverse stakeholders operating at different scales, effective communication and active engagement of stakeholders is paramount. In particular, involvement of farmers/land managers is critical as they the ultimate implementers are remediation measures.
- 2. Increase awareness of the existence and performance of soil remediation measures: Strategies to enable this include campaigns using mass media, fact sheets, and research papers. Others include collaborations with farmer leaders and extension workers to promote on-site demonstration activities, and farmer-to-farmer training. Using farmer-led on-site demonstration can showcase costs and benefit aspects of adoption measures, fostering trust amongst researchers, farmers and government actors.
- Education and training: Land managers need to be trained regularly to reinforce their knowledge and skills for proper application of measures. Strengthening the education-researchdissemination systems can enable this. Long-term trials or on-site demonstrations are recommended to deepen learning, especially for measures that do not deliver quick benefits, such as conservation agriculture. Funding is required to aid this process, including strategic investments

that either improve the socio-economic environment or make measures more affordable for land users/ managers.

- **4.** Inclusion of incentives into policies: Some measures can be too costly or may not provide immediate rewards to farmers¹⁶. As such, providing incentives in the form of direct payments, e.g. through the Common Agricultural Policy, can spur land users to adopt measures.
- 5. Motivating farmers through market development and value chains: Certification of farm produce/products and provision of business-friendly market environments can motivate farmers to both adopt measures and engage the land more productively (as emphasised by workshop stakeholders).

Conclusion and policy implications: Institutional factors are common barriers to adoption of measures across RECARE case studies. To address this would require multidisciplinary, collaborative stakeholder engagements, while learning from endusers. Improved management dissemination of appropriate knowledge to strengthen cooperation and trust between researchers and farmers are needed to foster utilisation of remediation measures. Actively engaging policy makers and administrators can facilitate integration of promising measures into policies. An enabling institutional environment crucial, not only for the formulation and enforcement of coherent policies, but also for sustained adoption of promising soil remediation measures across Europe.

Acknowledgements: The authors would like to thank RECARE study site partners for their valuable contributions.

References

¹ FAO. (2018). Climate smart agriculture: Building resilience to climate change. Rome: FAO.

- ² WOCAT. (2018, June 6). WOCAT SLM database. Retrieved from https://qcat.wocat.net/en/wocat/.
- ³ Stringer L.C., Fleskens L., Reed M.S, de Vente J. and Zengin M. (2014). Participatory Evaluation of Monitoring and Modeling of Sustainable Land Management Technologies in Areas Prone to Land Degradation. *Environmental Management*, *54*(5), 1022-1042.
- ⁴ Fleskens L., Nainggolan D., Stringer L.C. (2014). An Exploration of Scenarios to Support Sustainable Land Management Using Integrated Environmental Socio-economic Models. *Environmental Management*, *54*(5). doi:10.1007/s00267-013-0202-
- ⁵ Leventon J., Fleskens L., Claringbould H., Schwilch G., Hessel R. (2016). An applied methodology for stakeholder identification in transdisciplinary research. *Sustain Sci 11*, 763-775. doi:10.1007/s11625-016-0385-
- ⁶ Wamsler C. (2017). Stakeholder involvement in strategic adaptation planning: Transdisciplinarity and co-production at stake? *Environmental Science and Policy* 75, 148-157. doi: 10.1016/j.envsci.2017.03.016.
- ⁷ Leventon J., Fleskens L., Claringbould H., Frelih-Larsen A., Schwilch G., Bachmann F., Stringer L. (2014). Report on stakeholder and institutional analysis. RECARE Project Report 02 D4.1. Leeds: RECARE-University of Leeds.
- ⁸ Hall A., Mytelka L., Oyeyinka B. (2006). Concepts and guidelines for diagnostic assessments of agricultural innovation capacity. Working paper series #2006-017. Maastricht: United Nations University UNU Merit.
- ⁹ Bryman, A. (2016). Social Research Methods (5th edition). Oxford: Oxford University Press.
- ¹⁰ ODI toolkit. Planning tools: Problem tree analysis. Retrieved from https://www.odi.org/sites/odi.org.uk/files/odiassets/publications-opinion-files/6461.pdf
- ¹¹ Ndah, H.T., Schuler, J., Uthes, S., Zander, P., Triomphe, B., Mkomwa, S. Corbeels, M. (2012). Adoption potential of conservation agriculture in Africa: a newly developed assessment approach (QAToCA) applied in Kenya and Tanzania. *Land Degration and Development*. doi:10.1002/ldr.2191
- ¹² Kalaba, F., Quinn, C., and Dougill, A. (2014). Policy Coherence and Interplay Between Zambia's Forest, Energy, Agricultural and Climate Change Policies and Multilateral Environmental Agreements. *International Environment Agreements: Politics, Law and Economics vol 13 (4)*. doi:10.1007/s10784-013-9236-z.
- ¹³ Aerni, P., Nichterlein, K., Rudgard, S., and Sonnino, A. (2015). Making Agricultural Innovation Systems (AIS) Work for Development in Tropical Countries. *Sustainability*, 7, 831-850. doi:doi:10.3390/su7010831
- ¹⁴ Dougill A.J., Whitfield S., Stringer L.C., Vincent K., Wood B., Chinseu, E.L., Steward P.R. and Mkwambisi D.D. (2017). Mainstreaming Conservation Agriculture in Malawi: Knowledge Gaps and Institutional Barriers. *Journal of Environmental Management* 195, 25-34. doi:10.1016/j.jenvman.2016.09.076
- ¹⁵ Pannell D.J., Marshall G.R., Barr N., Curtis A., Vanclay F., Wilkinson R. (2006). Understanding and promoting adoption of conservation practices by rural landholders. *Australian Journal of Experimental Agriculture*, 46, 1407-1424. doi:10.1071/EA05037
- doi:10.1071/EA05037

 16 Baudron, F., Thierfelder, C., Nyagumbo, I. and Gerard, B. (2015). Where to Target Conservation Agriculture for African Smallholders: How to Overcome Challenges Associated with its Implementation? Experience from Eastern and Southern Africa. *Environments* (2), 338-357.

About the Sustainability Research Institute

The Sustainability Research Institute conducts internationally recognised, academically excellent and problem-oriented interdisciplinary research and teaching on environmental, social and economic aspects of sustainability. We draw on various social and natural science disciplines, including ecological economics,

environmental economics, political science, policy studies, development studies, business and management, geography, sociology, science and technology studies, ecology, environmental science and soil science in our work.

About the Authors

Edna Chinseu is a Postdoctoral Researcher at Sustainability Research Institute University of Leeds; Julia Leventon is a Professor at Leuphana University: Lindsay Stringer is Professor in Environment and Development at SRI; Uche Okpara is a Research Fellow in Environment Development at SRI; and Luuk Fleskens is an Associate Professor in Soil Physics and Land Management at Wageningen University and Research Centre in the Netherlands.

For more information, please contact:

Lindsay Stringer - Sustainability Research Institute, University of Leeds, Leeds, LS2 9JT L.Stringer@leeds.ac.uk

UNIVERSITY OF LEEDS

Suggested Citation:

Chinseu EL, Leventon J, Stringer LC, Okpara UT, Fleskens L 2018. Barriers to adoption of measures for addressing soil threats across Europe: *Insights from the RECARE Project*. SRI Briefing Note Series 19