Imaging the Destruction of Continental Lithosphere beneath Afar

Catherine Rychert University of Bristol -University of Southampton

Thanks to: James O. S. Hammond, J. Michael Kendall, Nicholas Harmon, Derek Keir, Cindy Ebinger, Atalay Ayele, Ian Bastow, Graham Stuart, Manahloh Belachew

What is the lithosphere-asthenosphere boundary?

We would like to find the boundary between the rigid lithosphere and the convecting asthenosphere.

Globally

Receiver functions – lateral coverage limited to seismic station locations

Chen et al., 2006; Chen et al., 2008; Chen, 2009; Kawakatsu et al., 2009)

Complications...

Fig. 4. Schematic diagram, loosely based on information in Fig. 2, depicting continental lithosphere as a juxtaposition of blocks stabilized through shallow subduction and brought together through continental collision.

Afar triple junction –

Detailed resolution of the lithosphere-asthenosphere boundary at transition of tectonic environments

Motivation -How is continental lithosphere destroyed?

How does the depth and character of the lithosphereasthenosphere boundary vary at across a rift?

Huismans & Beaumont, Nature, 2011

Method

1) Rotate recorded waveform to P and S components.

2a) Bin data by conversion point, simultaneously deconvolve and migrate to depth in 1-D.

2b) Extended multi-taper receiver function technique and 3-D migration.

Afar triple junction, 75 km depth

Strong LAB beneath flank, shallows beneath flood basalts

No LAB beneath rift.

Sharp transition implies rigidity of the lid.

Flank to rift cross section Results from the migrated extended multitaper method

[Rychert et al., submitted]

35°

45

40°

[Rychert et al., submitted]

Good agreement with previous seismic results.

Joint Ps receiver function – surface waves 70-80 km thick lid vs. no lid beneath rift [Dugda et al., 2007].

Surface waves [Fishwick et al., 2010].

Depth 4 (km)

30

30

3.8

4.0

4.2

Shear wavesneed (km/s)

75km depth

40

4.4

4.6

Previous seismic results

 SKS & surface waves – aligned melting in upper
75 km.

Elevation (km)

Longitude

depth =

100 km

Body wave velocity

anomalies beneath rift

39.5 40.6 41.7 42.8

38.3 39.5 Longitude

36.1 37.2

41

S-wave % velocity anomaly

[Kendall et al., 2005; Bastow et al, 2010]

P-to-S: Moho shallows, Vp/Vs high beneath rift

[Hammond et al., 2011]

Moho depth(km)

Synthetic Waveform Modeling

Geodynamic Modeling

Geodynamic models with high melt retention and $Tp = 1350 - 1400^{\circ}$ C match both the depth (65-85 km) and the magnitude (~8%) of the observed seismic discontinuity.

Other Supporting Evidence

Africa has moved ~700 km away from the location where a plume caused flood basalt volcanism ~35 Ma [Silver et al., 1998].

Although interpreted as a thermal anomaly, the range of potential temperatures from geochemistry (1370 - 1490° C)[Rooney et al., 2011] agrees with our predicted range (1350 – 1400° C), i.e., not significantly hotter than normal mantle.

Depth of melting consistent with geochemical estimates (70 – 90 km) [Furman, 2007].

[Chang & van der Lee, 2011]

No plume visible beneath Afar in joint body wave surface wave tomography.

Conclusions

A sharp rigid lid is imaged on the flank of the Afar rift at ~75 km depth. The transition from flank to rift is abrupt.

The sub-crustal lithosphere beneath the rift has been destroyed.

A significant velocity increase imaged beneath the rift is consistent with geodynamic predictions for the onset of decompression melting.

Its depth is shallow, indicating no significant plume influence

Conclusions

- A sharp rigid lid is imaged on the flank of the Afar rift at ~75 km depth. The transition from flank to rift is abrupt.
 - The sub-crustal lithosphere beneath the rift has been destroyed.
 - A significant velocity increase imaged beneath the rift is consistent with geodynamic predictions for the onset of decompression melting.

Its depth is shallow, indicating no significant plume influence today.