Remote Detection and Monitoring of Volcanic Eruptions in the East African Rift

Simon Carn¹, David Fee², Fred Prata³

 ¹ Department of Geological and Mining Engineering and Sciences, Michigan Technological University, Houghton, MI, USA
² Wilson Infrasound Observatories, Geophysical Institute, University of Alaska Fairbanks, Fairbanks, AK, USA
³ Atmosphere and Climate Department, Norwegian Institute for Air Research, Kjeller, Norway

Overview

- Satellite remote sensing of volcanic SO₂ emissions
 - Unambiguous detection of eruptions
 - Timely detection essential for hazard mitigation (aviation) and rapid field response
 - Focus on Afar: remote volcanoes, minimal cloud cover
- Volcanic eruption monitoring using infrasound
 - New tool for detection and monitoring of EAR eruptions
- 2011 Nabro (Eritrea) eruption case study
 - Among largest volcanic SO₂ emissions since 1991
- NASA SERVIR proposal
 - Regional volcano monitoring system for EAR

Operational space-based SO₂ measurements

Up to ~15 daily overpasses by ultraviolet (UV) and infrared (IR) sensors

+ TOVS/HIRS, MSG/SEVIRI (Europe/Africa)

Ozone Monitoring Instrument (OMI)

- UV/Visible sensor
- On NASA/Aura satellite
- Launched July 2004
- Daily contiguous global coverage
- 13 x 24 km nadir pixel
- Overpass at 1:30-2:00 pm local time
- Measures SO₂ total column (plus other gases and aerosols)
- Data publicly available and free

 Near real-time (NRT) OMI SO₂ data produced within 3 hours of satellite overpass (http://satepsanone.nesdis.noaa.gov/pub/OMI/OMISO2/index.html)

Afar-Red Sea eruption sequence, 2005 - present

Date	Volcano	Eruption vol. (km ³)*	SO ₂ emission (kt)
Sept 2005	Dabbahu	?	None detected
Aug 12, 2007	Manda Hararo	0.004-0.009	26
Sep 30, 2007	Jebel al-Tair	? (>16 km)	80
Nov 3, 2008	Alu/Dalaffilla	0.03-0.045 (14-16 km)	100-200
Jun 28, 2009	Manda Hararo	0.014-0.018	34
May 21, 2010	Manda Hararo	?	1
Nov 2010	Erta 'Ale lava lake overflow		None detected
Jun 12, 2011	Nabro	? (~19 km)	~2000-3000
Dec 19, 2011	Zubair group, Yemen	? (partly submarine)	0.5

* From Ferguson et al. [2010] and ASTER data analysis

- Near-real time OMI SO₂ data latency is \sim 3 hours after Aura overpass
- MSG/SEVIRI has higher temporal resolution, but has lower sensitivity to SO₂
- Most eruptions also produced strong thermal IR signals (lava flows)
- Timely detection needed for hazard mitigation; also enables rapid field response

Nabro SO₂ emission time-series

Nabro – June 2011

- SO₂ (and thermal IR) data consistent with depressurizing source
- SO₂ measurements are a good proxy for lava effusion rates

Infrasound basics

- Infrasound is low frequency sound between ~2 mHz (acoustic gravity waves) and 20 Hz (threshold of human hearing)
- Volcanoes produce prodigious infrasound, often peaked at ~1 Hz
 - Also produced by avalanches, tornadoes, tsunamis, hurricanes, elephants
- Attenuation of infrasound is very low = travels long distances
- Relatively homogeneous atmosphere = predictable propagation paths
 - Atmospheric structure depends on winds and temperatures
 - Wind and ocean noise contaminate infrasound recordings
 - High correlation between cumulative infrasound energy and daily SO₂ emissions(Redoubt, Alaska)
 - Good correlation between infrasound energy and ash cloud height [Fee et al., 2010, Steffke et al., 2010, DaBrowa et al., 2011]

Nabro eruption, June 2011

Nabro plume (June 13, 2011) - no detectable volcanic ash

Major volcanic SO₂ emissions in 2010-11

Nabro eruption - OMI SO₂

 SO₂ emissions detected 13 June – 12 July:

>2 Tg (among the highest since 1991)

- Stratospheric and tropospheric plumes
- SO₂ cloud tracked into Asia

Issues:

- Limited temporal resolution
- High column density saturation
- Analysis region size "Double counting"
- Retrieval dependence on SO₂ altitude
- Row anomaly limits usable data

Nabro eruption: AIRS SO₂

- SO₂ emissions detected 13-26 June
- Only sensitive to UTLS (upper tropospheric/lower stratospheric) SO₂
- SO₂ cloud tracked into Asia similar to OMI

Issues:

- Not as sensitive to SO₂ as OMI
- Narrower swath may not capture entire plume
- Analysis region size "Double counting"
- Dependence on SO₂ altitude

Infrasound Data and Results

IS19 (Djibouti) Detections:

- 264 km, 323° from Nabro
- New array (data gap 16 June 3 July)
- Detected Nabro eruption between >0.02-8 Hz
- Travel time 1216 s (~20 minutes)
- Onset: 12 June 21:56:06 UTC, End: 12 July

SO₂ and IS19 Acoustic Energy Comparison

Nabro SO₂ Mass vs IS19 Acoustic Energy

SO₂ and IS32 Acoustic Energy Comparison

Nabro SO₂ Mass vs IS32 Acoustic Energy

IS19 – Nabro Infrasound Signals

Power Spectral Density:

- Broadband signal (black line)
- Well-above background (gray)
- Fits theoretical Large Scale Turbulence (LST) jet spectrum (red) for portions of eruption, but some variability exists
- LST characteristic of supersonic 'man-made' jets

Waveforms:

- Numerous short-duration compressions without rarefaction
- Separated by ~3 s
- Higher frequency (>0.5 Hz)
- Detected on all channels

'Crackling' Nabro

FIGURE 1. Two 20 ms segments of the jet noise wave form measured on the Olympus 593 engine. The sound of (a) crackles distinctly, that of (b) does not.

Ffowcs-Williams et al [1975], "Crackle: an Annoying Component of Jet Noise," *Journal of Fluid Mechanics.*

Typical asymmetric Nabro waveforms at IS19

- **Crackle**: jet engine noise characterized by sharp compressions followed by less intense/non-existent rarefactions
- Common from high thrust, high mach number, hot jet engines (e.g. space shuttle, fighter aircraft, etc.)
- Nabro jet: Mach >1.5, 450 m/s
- First convincing example from many infrasound studies of volcanic jets

Eruption in Zubair archipelago, Yemen – Dec 2011

NASA SERVIR proposal

The overarching goal of the SERVIR initiative is to 'integrate satellite observations, ground-based data and forecast models to monitor and forecast environmental changes and to improve response to natural disasters' [http://www.nasa.gov/mission_pages/s ervir/index.html].

> Eruption detection Infrasound, SO₂, thermal IR

Plume dispersion modeling (Puff) Initialized with infrasound data

Plume tracking Satellite SO₂ and ash data

(RCMRD)

Summary

- Afar Red Sea eruptions since 2005 detected within minutes to hours using infrasound and satellite SO₂ data
- Nabro eruption produced extensive infrasound and SO₂ from mid-June to mid-July 2011
 - First-order correlation between SO₂ emissions and infrasound energy
 - Potential to use remote infrasound arrays as real-time detector of elevated emissions
 - Multiple volcanic jet noise features at IS19

Future Work:

- Incorporate SEVIRI SO₂/ash data
- Compare with other datasets (e.g. seismic)
- Further evaluate infrasonic (degassing) source characteristics
- Better constrain volcanic jet parameters via infrasound
- Regional volcano monitoring system for EAR (NASA SERVIR)

Krafla SO₂ emissions – September 11, 1984

