

Volcano Deformation in the Main Ethiopian Rift

Juliet Biggs¹; Ian Bastow¹, Derek Keir², Elias Lewi³, ¹University of Bristol; ²University of Leeds; ³University of Addis Ababa

Seismic and Eruption Surface Deformation

Kenyan Rift Volcanoes 1997-2010

Paka 21.3 cm uplift 29 May 06 - 05 Mar 07 (9 months)

> Depth 2.8 km Radius 6.3 km

Evidence for melt in the MER

Gravity: Shallow high density body beneath Boset volcano (Cornwell et al, 2006)

Seismic Refraction: Velocities compatible with a cooled gabbroic body (Maguire et al, 2006)

Shear-wave splitting: melt filled pockets in the top 90km of the lithosphere (Kendall et al, 2005)

Crustal Tomography: high velocity mafic intrusions ~7km beneath the magmatic segments (Kerenan et al, 2004)

Seismicity: Ongoing microseismicity beneath Fentale-Dofen MS (Keir et al, 2006)

Petrology: Fractional crystallisation in the upper 5km (Rooney et al, 2007)

Volcanic Hazard and Risk

No eruption since 1820's.

From: GFDRR World Bank Report

Main Ethiopian Rift

Corbetti

At least 14cm of subsidence between 1997 and 2000.

Ayelew et al, 2004

Rejuvenated uplift in 2010

Main Ethiopian Rift

Modelling: Penny Shaped Crack

Time Series and Source Modelling

			Temporal Pattern			Source Geometry				
		Start		Displ.	Duration	Decay	Model		Depth	Radius
				(cm)	(days)	(days)	Туре		(km)	(km)
	Alutu	Dec 0 3		+15	260	230	Penny		0.7-2.5	2.8-8.9
Alutu		Sep 04		-4.7	1400	320	Penny		0.5-1.9	2.9-10
		Jul 08		+9.9	150	230	Penny		0.7-2.4	4.0-8.2
		Dec 0 8		<-4.3	>750	320	Penny			
Bora	Bora	Feb 08		+5.3	900	1600	Penny		0.9-1.3	4.7-8.1
Corbetti	Corbetti	Feb 94-Ja	n 96*	>1.4	-	+	-	1	-	-
		Sep 97-Se	ep 00*	<14	-	+	Mogi		5.8-7.8	0
		-		-3.3	>2100	1500	-		-	-
		Aug 09		+4.2	29 <mark>0</mark>	1700	Mogi		3.3-5.3	0
Hale.	Haledebi	Jun 07		+4.1	170	630	Dipping	\$:11	2.7-8.8	5.8x8
		Dec 0 7		-5.4	>1000	6800	Dipping	\$ i11	2.7-8.8	5.8x8

Rate:

Exponential decay at Alutu;

~ Constant rate at Bora, Corbetti, Haledebi.

Depth:

All depths are shallow (<10 km): Alutu + Bora <3 km.

Shape:

Alutu, Bora, Corbetti fit a radially symmetric source; Haledebi is asymmetric/dipping.

Alutu Langano Geothermal Field.

- T=350C at 2500m
- Primary aquifer at >1400m.

•Exploration drilling in 1980's

- 7.3MW power station installed in 1999; reactivated in 2009
- Currently installing a seismic network (ask Mike Kendall or Ian Bastow)
- MT Study (see Samrock Poster)

EAR-Wide Perspective

Deforming Volcanoes

1	Nyamuragira	Cayol et al, 2007
2	Nyiragongo	Poland and Lu, 2004
3	Suswa	Biggs et al, 2009
4	Longonot	Biggs et al, 2009
5	Menengai	Biggs et al, 2009
6	Paka	Biggs et al, 2009
7	Silali	Robertson et al, poster
8	Ol Doinyo Lengai	Biggs et al, unpub.
9	Corbetti	Biggs et al, 2011
10	Alutu	Biggs et al, 2011
11	Hertali	Biggs et al, 2011
12	Bora	Biggs et al, 2011
13	Gada' Ale	Amelung et al, 2000
14	Dabbahu/Gabho	Wright et al, 2006;
		Grandin et al etc.
15	Nabro	Pagli et al
16	Erta Ale	Pagli et al
17	Dallafilla	Pagli et al
18	Dallol	Wright el al

Historical Eruptions

1	Nyiragongo
2	Nyamuragira
3	Visoke
4	South Island
5	The Barrier
6	Oldoinyo Lengai
7	Meru
8	Кіеуо
9	Fentale
10	Kone
11	Dallol
12	Dallaffilla
13	Erta Ale
14	Nabro
15	Dubbi
16	Alayta
17	Dabbauhu
10	Mandallannana
10	Manda Harraro
18	Manda Harraro Manda Inakir

Deformation Statistics

	Andes	Aleutians	Iceland	E. Africa
Historical	62	42	17	20
Deforming	18	15	8	14

Conclusions

- Many of the volcanoes in the Main Ethiopian Rift and Kenyan Rifts are actively deforming despite few historical eruptions:
 - EAR is fundamentally different to other volcanic regions (including Iceland).
 - The historical record is incomplete
 - This is an abnormally quiet period.
- The deformation sources are shallow indicating shallow magma storage and interaction with hydrothermal systems.

Main Ethiopian Rift

- Current Spreading Rate 6.5 mm/yr
- Extension on Mid-Miocene border faults began ~18Ma.
- Since 12Ma, strain has progressively localized towards the magmatic segments.
- 80% strain now accommodated in the rift.

Conclusions and Implications

Shallow melt storage beneath volcanic edifices in the Main Ethiopian Rift.

No surprise in terms of long-term rift development but raises questions about short-term interactions:

- 1. **Rifting:** how does this melt contribute to extension potential to feed lateral dike intrusions?
- 2. **Volcanology:** dynamics of coupled magmaticgeothermal systems (4 yr cycles of uplift and subsidence)
- 3. **Resources**: geothermal reservoirs and mineral deposits.

Coupled Magmatic and Hydrothermal processes

