

The role of melt induced lithospheric weakening on the dynamics of continental rifting

H. Schmeling and H. Wallner Institute of Geosciences, Goethe University Frankfurt

Aims

www.goethe-

'sitaet.d

- Rifting scenario: Melt extraction and magma intrusion
 - \rightarrow enhanced heat transport \rightarrow heating of shallow lithosphere
- 1D kinematic thinning model → T-increase
- 2D dynamic rifting model* \rightarrow lithopheric weakening
- Effect on strength and feed back on magma production

* Schmeling, H., 2010: Dynamic models of continental rifting with melt generation. Tectonophysics, Volume 480, Issues 1-4, 5 January 2010, Pages 33-47

INITIAL OCEAN BASIN

Source: J. Tarney

Lithosphere under extension

1D kinematic model

Result 1D model

MRAV Conference 2012 Addis Abeba

Schmeling et al.: Continental rifting with melt induced weakening

Result 1D model

www.goethe-uni

sitaet.d

10³ Generalisation Thinning rate \rightarrow Peclet number $Pe = \frac{t_{diffusion}}{t_{thinning}} = \frac{\dot{e}_0 h_0^2}{\kappa}$ \dot{e}_0 - Strainrate of thinning × /×² × 10² ⊢ h_0 - Initial thickness κ - Thermal diffusivity Potential temperature of mantle $T_{pot} = 1826K$ $\delta T_{\text{max}}' = \left(\frac{T_{pot} - T_{s0}}{c_1 T_{orat}}\right)^2 \cdot P e^{1/2}$ $T_{pot} = 1675 \text{ K}$ $T_{pot} = 1524 \text{ K}$ Scaling law, depends on: square root (Pe) Square root of Pe (=thinning rate)^{10¹} 10² 10³ Square of T_{pot} - T_{solidus} Pe

6/17

Application to a dynamic rift model

Governing equations of two-phase flow melt-4ma GOETHE FRANKFURT AM MAIN

Creep laws:

- Mohr-Coulomb-Plasticity (Byerlee)
- P-T-dependent power law (from lab experiments);
 - Upper crust:
 - Lower crust:
 - Mantle (solid)
- no elasticity

- Westerly Granite, n = 3.5
- Clinopyroxenite, n = 2.6
- Aheim Dunite, n=3.6
- Mantle (partielly molten) dto. weakened by $exp(-a \phi)$

Numerical approach: 2D Finite Differences, markers

Dynamic rift model

MRAV Conference 2012 Addis Abeba

Schmeling et al.: Continental rifting with melt induced weakening

10/17

Effect of intrusional weakening

Pe = 521

 $T_{pot} - T_{solidus} = 250 \text{ K}$

Temperatue difference

Effect of intrusional weakening

- Temperature increase by 200 250 K
- Compare with 1D prediction Pe = 521 $T_{pot} - T_{solidus} = 250 \text{ K}$
- → δT_{max} = 209 K
- Weakening: effective viscosity lower by up to one order of magnitude
 more effective melting (see below)

Viscosity difference

Reduction of lithospheric strength

MRAV Conference 2012 Addis Abeba

Schmeling et al.: Continental rifting with melt induced weakening

13/17

Effect of intrusional weakening

Feed back on meltproduction:

Rifting with intrusional magma emplacement

1D kinematic thinning model:

- heating several 100 K
- Follow simple scaling law:
- Depends on square root of thinning and square of (T_{pot} T_{solidus})

2D dynamic rift model

- Rheological weakening by an order of magnitude or more
- strong decrease in lithospheric strength
- feed back on melt production
- May help explaining EARS magma volumes
- Compaction counteracts this effect, but only weakly