

ERC Starting Grant Project POMPEI

Dynamics of dike propagation and patterns of dike-induced seismicity

Eleonora Rivalta

Torsten Dahm Maurizio Bonafede Sigurjón Jónsson Luigi Passarelli Francesco Maccaferri Marco Beleggia

Introduction

Stress transfer may generate, anticipate or delay earthquakes on faults.

- Earthquakes that would have 'never' occurred by means of tectonic forces alone, are generally called 'induced'
- 'Anticipated' earthquakes are generally called 'triggered'
- Stress shadows
- Outline
 - 1) Pattern of seismicity induced by propagating dikes
 - 2) Pattern of seismicity in the shadow of large diking events
 - 3) Earthquakes triggered by dike-induced stresses

1) The pattern of seismicity induced by propagating dikes

The pattern of seismicity induced by propagating dikes

Physical modelling

Dike coupled to the magma chamber (total mass is constant, Rivalta and Segall, GRL, 2008)

$$dM = \rho \, dV + V \, d \, \rho = \left(\rho \frac{dV}{d\rho} + V \frac{d \, \rho}{d\rho}\right) d\rho = \rho \, V \left(\beta_{e} + \beta_{m}\right) d\rho$$

$$\beta_m = 10^{-11} - 10^{-10} Pa^{-1}$$

(or much higher if magma contains bubbles)

$$r_{V} = \frac{V^{i}}{\Delta V^{c}} = 1 + \frac{\beta_{m}}{\beta_{c}}$$

 $\beta_{e}(spherical chamber) = \frac{3}{4\mu} \sim 10^{-11} - 10^{-10} Pa^{-1}$ $\beta_{e}(cigar - shaped chamber) = \frac{1}{\mu}$ $\beta_{e}(penny shaped crack) = \frac{1}{p^{i} - \sigma} \sim 10^{-7} Pa^{-1}$ $\beta_{e}(ellipsoid) \qquad \text{depends on the aspect ratio}$ (Amoruso and Crescentini, 2009)

Physical modelling

Observed and modelled ground deformation Sept. 2005 dike intrusion in Afar From Grandin et al., 2009 ΔV Chambers: - 0.42 km³ - 0.12 km³

ΔV Dike: +1.5 km^3

 $\Delta V_Dike / \Delta V_Chamber = r_V = 2.8$

Model B)

- ΔV Chambers: 0.42 km³
 - 0.12 km^3
 - 0.37 km^3

ΔV Dike: +2.0 km^3

r_V = 2.2

Physical modelling

Seismicity and volumetric changes during the initial phase of the 2000 dike propagation at Miyakejima From Irwan et al., 2006

MODELLING

Rivalta, JGR, 2010

MODELLING

Rivalta and Segall, GRL, 2008

MODELLING: Propagation with no external gradient

Propagation with an external gradient (preliminary)

The pattern of seismicity induced by hydrofractures

2) Dike-induced stress shadow – Instrumental and historical seismicity

2) Coulomb stress modelling

2) Modelled seismicity rate changes

Rate and state earthquake nucleation theory, Dieterich, 1994

2) Modelled seismicity rate changes

Rate and state earthquake nucleation theory, Dieterich, 1994

The 13 Jan 1976 M 6.2 Kopasker earthquake: triggered or not triggered?

Operatively, 'triggered' earthquakes have been taken as those occurring on faults which have experienced a positive Coulomb Stress Change.

Problematic because:

•Large areas may be linked to a positive or negative Coulomb stress change for small differences in the stress model

The statement that a specific earthquake was triggered should be given in a probabilistic way (along with the relative uncertainty).

Eleonora Rivalta POMPEI @ University of Hamburg

The 13 Jan 1976 M 6.2 Kopasker earthquake: triggered or not triggered?

Operatively, 'triggered' earthquakes have been taken as those occurring on faults which have experienced a positive Coulomb Stress Change.

Problematic because:

•Large areas may be linked to a positive or negative Coulomb stress change for small differences in the stress model

The statement that a specific earthq should be given in a probabilistic way (along with the relative uncertainty).

Eleonora Rivalta

POMPEI @ University of Hamburg