

Tectono-Magmatic Evolution of Atlantic Type Rifted Margins

Gianreto Manatschal

IPGS-EOST, Université de Strasbourg – CNRS 1 rue Blessig, F-67084 Strasbourg, France

Magmatic Rifting & Active Volcanism Conference 10-13/1/2012 Addis Ababa

Image: GeopoliticusChild by Salvador DALI

Major questions addressed in this presentation:

- What makes plates so weak that they can break?
- Where, when and how does continental breakup occur?
- What are the processes controlling rifting, continental breakup and seafloor spreading?

The "text book" rifted margin

A model inspired from the E-African and Red Sea rift system

Architecture of the "text book" rifted margin

cont. crust

COB

cont. crust

COB

Evolution and architecture of rifted margins "the classical rift model"

oceanic crust

"non"- magmatic 1069 1065 901 1068 |1067 Iberia magmatic Pelotas **PelotasSPAN (ION-GXT)** (taken from their homepage)

High-quality reflection seismic data show a divergent style of margin architecture in which quantity and distribution of syn-rift magmatism and fault structures are the most variable features

The "real" view

Major question

do rifted margins operate as either magmatic or non-magmatic or do tectonic and magmatic processes interact before, during and after continental breakup?

In my presentation

discuss the structural and magmatic evolution of so called "magma-rich" and "magma-poor" rifted margins using examples from the South and North Atlantic

and

I will try to apply the lesson we learned in the Atlantic to the Afar-system

oceanic crust

The southern North Atlantic rift-system

Major observations

- Three major crustal domains
- Complex, 3D and polyphase rift structures
- Locale occurrence of aborted rifts floored by lower crust and/or mantle rocks associated with MORB magmatism
- Occurrence of continental ribbons, H-blocks, extensional allochthons and outer highs

Section through the Orphan-Newfoundland-Iberia rift system

Mantle rocks in the OCT

Drilled mantle lithologies

- Very heterogeneous and strongly serpentinized
- Always deformed at the top (cataclasites and gouges)

*But only highs have been drilled!

Newfoundland

AVORTED

RIFT

continental crust

OCT - ZECM

Bonavista Platform

0km

0 km

10 km

20 km

30 km

300

400

Orphan Basin

modified after Péron-Pinvidic and Manatschal (2010)

Composition of the mantle rocks

Major conclusions

- Newfoundland peridotite more depleted than Iberia (higher degrees of melting)
- All holes from Iberia show some deviations from Cr# correlation (equilibration with plagioclase)
- Newfoundland peridotite among most depleted peridotites drilled (inherited mantle domain)
- Some similarities with sub-arc mantle (imprint of old subduction?)

Example of exhumed mantle in the Alps

Tasna Ocean Continent Transition (OCT)

Florineth and Froitzheim 1994, Manatschal et al. 2006

Section A

Section B

Addis Ababa 10-13/1/2012

Example of exhumed mantle in the Alps

Infiltrated

Magmatic rocks in the OCT (Iberia-Newfoundland and Alpine Tethys)

Drilled magmatic rocks

(ODP Sites 897, 1070, 1276, 1277)

- Magmatic rocks are present ۲ but rare
- Syn-rift as well as post-rift magmatic activity
- Apparent increase in magma oceanwards
- Alkaline as well as MOR signatures

Sill in sediments

Gabbros in

Core 1276-87-6

Site 1070

modified after Péron-Pinvidic and Manatschal (2010)

Where and when did breakup occur?

Bronner et al. 2011(Nature Geoscience)

Where and when did breakup occur?

Bronner et al. 2011(Nature Geoscience)

Where and when did breakup occur?

The southern North Atlantic: conclusions

Major conclusions:

- Magma is of subordinate importance during hyper-extension
- Breakup is linked with excess magmatic event
- More than 150 km of exhumed mantle

The North Atlantic rift-system

Major observations

- Prominent magmatic event during continental breakup related to the arrival of the Island plume
- Present-day rift structure is dominated by magmatic breakup

Section through the East Greenland – mid-Norway conjugate margins

(modified from Tsikalas et al. 2007)

The North Atlantic rift-system

Major observations

- Prominent magmatic event during continental breakup related to the arrival of the Island plume
- Present-day rift structure is dominated by magmatic breakup

⁽modified from Tsikalas et al. 2007)

The North Atlantic rift-system

Major observations

- Prominent magmatic event during continental breakup related to the arrival of the Island plume
- Present-day rift structure is dominated by magmatic breakup

⁽modified from Tsikalas et al. 2007)

Greenland

100

Continental basement

200

10-

20 Ę

30-

40-

50-

0

The North Atlantic rift-system

Major observations

•Late Jurassic – Early Cretaceous hype extension resulted in extreme thinning c the continental crust in the present-day Møre and Vøring basins

 Excess magmatic event overprints hyper-extend continental crust

⁽modified from Tsikalas et al. 2007)

North Atlantic rift-system: conclusions

Major observations

•Late Jurassic – Early Cretaceous hyperextension

•Breakup (~55 Ma) related to excess magmatic event (SDRs and Low Crustal Magmatic Bodies)

Major question

•Why did the Late Jurassic – Early Cretaceous event not form more magma, and why did the North Atlantic not open during this stage?

The Pelotas rift system (S-Brazil)

PelotasSPAN (ION-GXT) (taken from their homepage)

Major observations

- Well developed SDR sequences
- Strong Moho-reflections
- What is underneath the SDR?

Gravimetric Free-air Map (Sandwell and Smith (2009))

South Atlantic (Pelotas – S-Brazil)

• Whole crust is formed by newly formed magmatic crust

Interpretation II

- Rifting initiates by hyperextension
- Breakup is linked with excess magmatic event overprinting hyperextended crust

Purely magmatic

Hyper-extension with magmatic additions

PelotasSPAN (ION-GXT) (taken from their homepage)

How do continents breakup?

The classical rift model

Results of the Ocean Drilling Program and seismic imaging

magmatic margins

- Seaward Dipping Reflection Sequences (SDR)
- Thickened crust (magmatic additions)

- Exhumed mantle
- Necking zones
- Detachment faulting and extensional allochthons

"non"-magmatic margins

How do ocean breakup?

The classical rift model

another approach to describe rifted margins

How do continents breakup?

Major conclusion

Most rifted margins may have undergone hyper-extension during earlier stages of rifting (also "magma-rich" systems), however, excess magma seems to be a prerequisite to breakup continental lithosphere (also in magma-poor margins)

How can we apply the lesson we learned in the Atlantic to the Afar system?

Two possible interpretations

Purely magmatic

PelotasSPAN (ION-GXT) (taken from their homepage)

Hyper-extension with magmatic additions

PelotasSPAN (ION-GXT) (taken from their homepage)

Interpretation I

 Whole crust is formed by newly formed magmatic crust
(e.g. Island)

where are the margins and why the abrupt transition?

Interpretation II

- Rifting initiates by hyperextension
- Breakup is linked with excess magmatic event overprinting hyper-extended crust
 (e.g. San Paolo Plateau)

Is there evidence for hyperextended crust and thinned lithosphere underneath AFAR ?

lithosphere underneath AFAR ?

Two possible interpretations

