Research on the Tectonic and Magmatic Development of the Ethiopian Rift System and

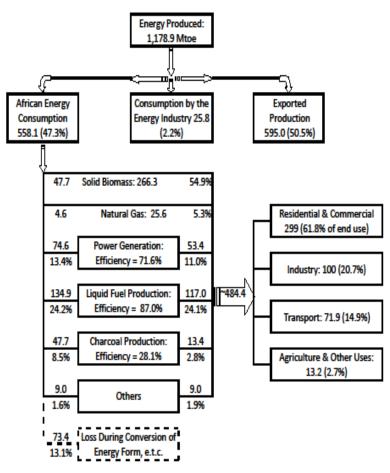
its Contributions to Geothermal Resource Exploration and Development.

> Getahun Demissie Addis Abeba, Ethiopia getahun.demissie.gemeda@gmail.com

Outline

 Why the need for geothermal energy development?

-Electricity supply in Africa


- What has been, and is being done?
 - –Synoptic case histories & prospects
- What contributions did Afar research make?

-N.E. Africa, extrapolations

1. THE DARK CONTINENT

HAKUNA MATAA: No light

The African energy system, 2008, figures in Million tons of oil equivalent (Mtoe). (based on IRENA, 2010).

A number of things are wrong here:

- Production: About 1 Toe/yr per capita,
 51% exported, 47% consumed
- Consumption: 60% biomass, 34%
 Fossil fuels, 6% renewables
- Use in economic production 34%
- > I ow energy use & poor structure

The Paradox: Energy Poverty in the middle of plenty

Considering only the renewable energy sources, Africa's potential, in TWh (from IRENA, 2010)

- Wind power: 5,000 7,000
- Solar Energy: 155,000 -170,000
- Geothermal energy: >125
- Hydropower: 1,844
- Bagasse: 3.0 13.6

Of the non-intermittent sources, 9% of the hydro and 1% of the geothermal potentials have been developed by 2011

Electricity is a good energy form: Easy to produce, transport and use, but

Sources	Capacity, GW	%
Non-renewable	104.7	84.0
Coal	52.4	42.0
Natural Gas	34.9	28.0
Oil	15.0	12.0
Nuclear	2.5	2.0
Renewable	24.3	16.0
Hydro	21.2	14.0
Wind	1.7	1.1
Biomass (bagasse)	1.1	0.7
Geothermal	0.2	0.2
Totals	129.0	100.0

Africa has small power generation capacity .

- Only 20% Africans have electricity access (World average 86%)
- Average African consumes 124KWh/yr (World average 2,784)

Africa needs to increase capacity 33-fold to serve all Africans

The present system is too dependent on fossil fuels.

Africa needs to use its abundant renewable energy sources:

- For additional generation capacity, and,
- To replace thermal generation and expand

Regional differences exist

S. & N. Africa:

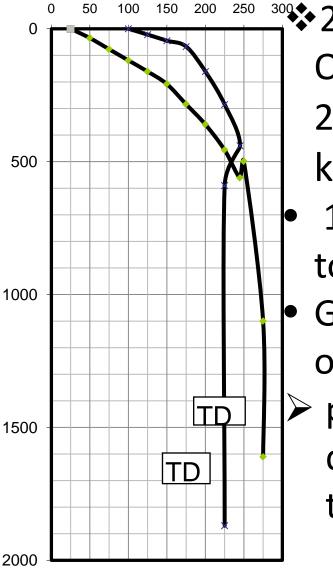
- 70% of Africa's generation capacity:
 - Attributed to Coal in S. & natural gas in N.
- 1.617 & 739 KWh per capita in S & N
- Access to Electricity: >70%
- SSA Less privileged: Access 20%, per capita consumption 107 KWh/yr.
 - Oil & gas in Gulf of Guinea area help
- Eastern Africa fares least: 15% access & 68 KWh/yr per capita consumption
- Each Eastern African could have a 60W light bulb to light for about 3 hours/day, but....
- There is no equity: the cities get 9/10th of the electricity

The reasons ?

- 1. Low African purchasing power.
- Economies grow 5%/yr. 7%/yr electricity demand growth promises more growth
- 2. High generation cost: Small power plants; Average hydro-plant size= 46MW
- Develop large hydro, 2-6 GW: a 10-fold capacity increase halves the unit cost
- 3. Small markets can not accommodate large plant additions
- Interconnect national power supply systems to create larger regional markets &power trading
- Large electricity consuming industries are in the cities, other power supply is unprofitable;
- Electricity is and essential social and economic infrastructure, do rural electrification schemes
- So there are the regional power pools which are addressing these issues.

The EAPP Plan to 2020

- HV transmission lines connect Egypt, Sudan, Ethiopia-Kenya, Tanzania, Uganda, Rwanda, Burundi, Uganda, East DRC (Kivu)
- Generation capacity from renewables increases energy supply by 40%
- Thermal generation will be phased out, except from coal.
- Unified electricity system will be regulated by a singly organization
- New Generation: 82.5% hydro, 13% geothermal, 4.5% wind
- Role of geothermal power is to support mainly hydo-based regional electricity system by base-load power supply.


2. GEOTHERMAL EXPLORATION AND DEVELOPMENT IN ETHIOPIA

- 1. <u>MER</u>
- 1969-71: 24 month reconnaissance covered 150,000 sq km ERS
- 1972: Inventory in the highlands
- Over 600 hydrothermal features associated with about 20 heating systems located
- 1973-80: Detailed surveys by Geology, Geochemistry,, geophysics at Langano, Corbetti, Abaya
- 1981-84: Exploration drilling of Alutu, 8 wells, 1,100-2.500m depth, T_{max}= 320^oC
- 2 wells cold, 4 wells produced, one was lost
 1996-99 Pilot plant installed: 7.3MW
- 210-2110 Further geophysical surveys: MT
 Present: Financing acquired for production drilling and 50MW power plant

- 2. <u>Tendaho</u>
- 1978-80: Detailed exploration of Tendaho graben
- 1993-95: 3 deep & 1 shallow exploration wells drilled to depths of 2196 & 466 m

Deep wells: T=278°C, but impermeable

🏶 200-400m depth in Quaternary sediments 245°C geo-fluid 1,000 kJ/kg, 100 tph, 27% dry 1997-98: Drilled 2 wells to ~500m, same result Geophysical survey ongoing; plan developing for drilling 3,000 m wells

to find deep resource

- 3. S. Afar-N. MER Surveys
- No more drilling finance: US\$ 3-4 million/well
- Semi-detailed surface exploration of 10 areas, to minimize pre-drilling surface exploration work.
- Tulu Moye, Gedemsa, Dofen & Meteka have good prospects for yielding >250°C geo-fluids.
- No more than one year of surface exploration is needed at each to ready them for drilling
- IPP now exploring Tulu Moye and Gedemsa, as well as Abaya and Corbetti.
- THE FUTURE?
- Regional geothermal programmes becoming active to support 7 EARS countries to explore and develop their geothermal resources: UNEP-ARGeo & AUC-RGP

3. HOW DID AFAR RESEARCH CONTRIBUTE TO GEOTHERMAL EXPLORATION?

- In the beginning there were or maps, geologic or topographic, only good aerial photographs
- The rift floor was covered by the "Aden series" of Blanford from a century earlier. The Oligocene flood basalts were also thought to outcrop.

MER:

- First clue: P. Mohr's perception of the "Wenji Fault Belt", Still used, even if since found to have been a bit enthusiastic,
- The interpreted high "reservoir temperatures" were from thermal springs associated with rhyolite centers in the fissure lava field of the WFB.
- Rift transverse structures favor positioning of silicic centers:
- Why all this rhyolite, crust anatexis or differentiation? what does it mean in terms of geothermal resource generation?

<u>AFAR Rift</u>

- **Enigmatic at first**
- Allalobeda thermal springs & Magenta fumaroles occur in block faulted basalt terrain, but
 - what and where is the heat source?
- Dubti farm mud volcanoes lie on SE trajectory of Manda-Hararu range faults.
 - what and where is the heat source?
- CNR-CNRS research explained Afar tectonic and magmatic development in terms of Plate Tectonics
- Manda Hararu : youngest microplate boundary
- Tectonic setting and interpreted high "reservoir temperature" ranked Tendaho high as a prospect area
- Geophysics by German universities showed crustal attenuation and deep temperature structures

Key Lessons Learned

- Where late Pleistocene rhyolites and cooccurring fissure basalts are known to be differentiation products, the most common case:
 - Long lived shallow magma body heat sources should be expected
- Rift transverse faults are micro-plate boundaries.
 - Positioning of silicic centers is favored where they cross WFB in MER and rift margin fault in N. Afar rift
- Calderas focus heat flux and geo-fluid upwelling & are easy to explore
- Allalobeda and the Dubti mud volcanoes could occur due to shallow ground water table supported by Awash River
 - Other "axial zones" in N. & Central Afar can be predicted to have blind geothermal systems due to paucity of shallow ground water

In ERS, there are only a small variety of tectonic and magmatic associations. A few geothermal models can describe a large number of geothermal areas

Young bimodal volcanic rock occurrences situated on micro[plate boundary structures are sure to be good geothermal targets.

Research generated knowledge of this association in Ethiopia.

Geothermal exploration could start at a higher level of knowledge and go further to "prove steam" than many

Thank you for your kind attention