Dr Christian März
Associate Professor: Biogeochemistry
Telephone number:
+44(0) 113 34
31504
Email address: c.maerz@leeds.ac.uk
Room: 9.149
Affiliation: Earth Surface Science Institute
Biography
Previous employment
Since 2016: Associate Professor in Biogeochemistry, Earth Surface Science Institute (ESSI), School of Earth and Environment (SEE), University of Leeds, UK
2013 - 2016: Lecturer in Geoscience, School of Civil Engineering and Geosciences (CEG), Newcastle University, UK
2012 - 2013: DFG Return Fellowship, Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Germany
2010 - 2012: DFG Research Fellowship, School of Civil Engineering and Geosciences (CEG), Newcastle University, UK
2008 - 2010: Postdoctoral Researcher, Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Germany
Qualifications
2004: German Diplom (MSc equivalent) in Geology, University of Heidelberg, Germany
2008: PhD in Marine Geochemistry, University of Bremen, Germany
Memberships/Fellowships
American Geophysical Union (AGU)
European Geosciences Union (EGU)
Deutsche Geologische Gesellschaft - Geologische Vereinigung (DGGV)
Geochemical Society (GS)
Committee Member of GeolSoc/MinSoc Geochemistry Group
Advisory Board Member of IASC Network Arctic in Rapid Transition (ART)
Research Interests
My general field of research is inorganic (bio)geochemistry. I am interested in the cycling and burial of carbon, sulfur, detrital elements (e.g., Al, Ti, Zr, K), biogenic elements and nutrients (e.g., P, Si), and metal (e.g., Fe, Mn, trace metals) in present and past marine environments, and the links with (micro)biology, mineralogy, depositional environment, and climate. Timescales of interest reach from the Present back through the Phanerozoic, and geographical spread of study sites from the tropics to the Arctic.
Studying marine pore waters and sediments, my analytical toolbox includes total HF digestions, sequential extractions (Fe, S, P, Si, Ba), XRF, ICP-OES, ICP-MS, AAS, IC, spectrophotometry, CNS elemental analysis, SEM-EDX, and XRD.
I am also a seagoing scientist and have participated in a number of research cruises onboard the Meteor, Heincke, Polarstern and the IODP drillship JOIDES Resolution, most recently to the Arctic Ocean and North Pacific.
My current research focus is on:
1) Diagenetic processes and benthic fluxes in modern marine sediments. Once they are deposited at the seafloor, many chemical elements (including carbon, sulfur, nutrients and metals) participate in a sequence of biogeochemical reactions that changes their phase association and/or redox state (early diagenesis). Following these reactions, elements can either be recycled back to the water column where they may fuel primary productivity, or they can be transformed into authigenic minerals that significantly alter the primary sediment composition. Although these diagenetic processes and their sedimentary expressions can occur long after the actual deposition of the sediments, they are often related to changes in depositional conditions (e.g., primary productivity, sedimentation rate) and can thus be useful for paleoenvironmental reconstructions.
2) Present and past oxygen-depleted marine environments. In parts of the ocean that experience high primary productivity and/or hydrographic restriction,the water column can become oxygen-depleted, anoxic, and even sulfidic. While these redox conditions favour the formation of organic-rich deposits ("black shales") and eventually hydrocarbon source rocks, they are also of crucial importance for the budgets and cycling of various nutrients and (trace) metals. In the modern ocean, anoxic to sulfidic water masses only occur in restricted basins (e.g., the Black Sea) or coastal upwelling areas (e.g., along the Eastern Pacific), but they are currently expanding as a result of anthropogenic activity (e.g., ocean warming, eutrophication). Ocean anoxia were also much more prevalent in the Mesozoic-Early Cenozoic "greenhouse oceans".
3) Biogeochemical processes in the modern and past Arctic Ocean. The Arctic Ocean has, over the last ~100 million year, undergone extreme climatic and environmental changes. From a restricted, brackish basin with black shale formation in the Cretaceous and Paleogene, it has developed into its current oligotrophic, ice-covered modern state. Reconstructing its development from sediment records informs us about its biogeochemical response to natural climatic variability, including past warm phases like the Pliocene or the last interglacial that might be analogues for future warming scenarios. Studying sub-recent Arctic sediments enables us to understand modern benthic processes and their response to climate change (e.g., retreating sea ice cover).
4) Coupled biogeochemical cycling of C, S, Fe, P and Si. Although chemical elements have very distinct characteristics and functions in nature, their biogeochemical cycles are often intimately linked. For example, the availability of excess hydrogen sulphide in sediments can enhance the preservation of organic carbon, with important implications for the global carbon cycle and hydrocarbon source rock formation. The interactions of the bioessential nutrients Fe and P are strongly redox-dependent, which can trigger far-reaching feedback mechanisms between ocean chemistry and climate change. The siliceous hard parts of marine algae can sequester bioessential nutrients and bury them into the seafloor.
Publications
- Müller J; Romero O; Cowan EA; McClymont EL; Forwick M; Asahi H; März C; Moy CM; Suto I; Mix A; Stoner J (2018) Cordilleran ice-sheet growth fueled primary productivity in the Gulf of Alaska, northeast Pacific Ocean, Geology, 46, pp.307-310. doi: 10.1130/G39904.1
- Buckman J; Mahoney C; Marz C; Wagner T; Blanco V (2017) Identifying biogenic silica: Mudrock micro-fabric explored through charge contrast imaging, AMERICAN MINERALOGIST, 102, pp.833-844. doi: 10.2138/am-2017-5797
- Buckman J; Mahoney C; März C; Wagner T; Blanco V (2017) Identifying biogenic silica: Mudrock micro-fabric explored through charge contrast imaging, American Mineralogist, 102, pp.833-844. doi: 10.2138/am-2017-5797
- De Vleeschouwer D; Dunlea AG; Auer G; Anderson CH; Brumsack H; de Loach A; Gurnis M; Huh Y; Ishiwa T; Jang K; Kominz MA; März C; Schnetger B; Murray RW; Pälike H (2017) Quantifying K, U, and Th contents of marine sediments using shipboard natural gamma radiation spectra measured on DV JOIDES Resolution, Geochemistry, Geophysics, Geosystems, 18, pp.1053-1064. doi: 10.1002/2016GC006715
- Kasina M; Bock S; Würdemann H; Pudlo D; Picard A; Lichtschlag A; März C; Wagenknecht L; Wehrmann LM; Vogt C; Meister P (2017) Mineralogical and geochemical analysis of Fe-phases in drill-cores from the Triassic Stuttgart Formation at Ketzin CO
2 storage site before CO2 arrival, Environmental Earth Sciences, 76, . doi: 10.1007/s12665-017-6460-9 - Och LM; Mï ller B; Mï rz C; Wichser A; Vologina EG; Sturm M (2016) Elevated uranium concentrations in Lake Baikal sediments: Burial and early diagenesis, Chemical Geology, 441, pp.92-105. doi: 10.1016/j.chemgeo.2016.08.001
- Jiménez-Arias JL; Mata MP; Corzo A; Poulton SW; März C; Sánchez-Bellón A; Martínez-López J; Casas-Ruiz M; García-Robledo E; Bohórquez J; Papaspyrou S (2016) A multiproxy study distinguishes environmental change from diagenetic alteration in the recent sedimentary record of the inner Cadiz Bay (SW Spain), Holocene, 26, pp.1355-1370. doi: 10.1177/0959683616640046
- Meinhardt AK; März C; Schuth S; Lettmann KA; Schnetger B; Wolff JO; Brumsack HJ (2016) Diagenetic regimes in Arctic Ocean sediments: Implications for sediment geochemistry and core correlation, Geochimica et Cosmochimica Acta, 188, pp.125-146. doi: 10.1016/j.gca.2016.05.032
- Pierre C; Blanc-Valleron MM; Caquineau S; März C; Ravelo AC; Takahashi K; Alvarez Zarikian C (2016) Mineralogical, geochemical and isotopic characterization of authigenic carbonates from the methane-bearing sediments of the Bering Sea continental margin (IODP Expedition 323, Sites U1343-U1345), Deep-Sea Research Part II: Topical Studies in Oceanography, 125-126, pp.133-144. doi: 10.1016/j.dsr2.2014.03.011
- Mï rz C; Wagner T; Aqleh S; Al-Alaween M; van den Boorn S; Podlaha OG; Kolonic S; Poulton SW; Schnetger B; Brumsack HJ (2016) Repeated enrichment of trace metals and organic carbon on an Eocene high-energy shelf caused by anoxia and reworking, Geology, 44, pp.1011-1014. doi: 10.1130/G38412.1
- Gulick SPS; Jaeger JM; Mix AC; Asahi H; Bahlburg H; Belanger CL; Berbel GBB; Childress L; Cowan E; Drab L; Forwick M; Fukumura A; Ge S; Gupta S; Kioka A; Konno S; LeVay LJ; Marz C; Matsuzaki KM; McClymont EL; Moy C; Muller J; Nakamura A; Ojima T; Ribeiro FR; Ridgway KD; Romero OE; Slagle AL; Stoner JS; St-Onge G; Suto I; Walczak MD; Worthington LL; Bailey I; Enkelmann E; Reece R; Swartz JM (2015) Mid-Pleistocene climate transition drives net mass loss from rapidly uplifting St. Elias Mountains, Alaska, Proceedings of the National Academy of Sciences of the United States of America, 112, pp.15042-15047. doi: 10.1073/pnas.1512549112
- Johnson K; Purvis G; Lopez-Capel E; Peacock C; Gray N; Wagner T; März C; Bowen L; Ojeda J; Finlay N; Robertson S; Worrall F; Greenwell C (2015) Towards a mechanistic understanding of carbon stabilization in manganese oxides, Nature Communications, 6, . doi: 10.1038/ncomms8628
- März C; Meinhardt AK; Schnetger B; Brumsack HJ (2015) Silica diagenesis and benthic fluxes in the Arctic Ocean, Marine Chemistry, 171, pp.1-9. doi: 10.1016/j.marchem.2015.02.003
- Poulton SW; Henkel S; März C; Urquhart H; Flögel S; Kasten S; Sinninghe Damsté JS; Wagner T (2015) A continental-weathering control on orbitally driven redox-nutrient cycling during Cretaceous oceanic anoxic event 2, Geology, 43, pp.963-966. doi: 10.1130/G36837.1
- Alexanderson H; Backman J; Cronin TM; Funder S; Ingólfsson L; Jakobsson M; Landvik JY; Löwemark L; Mangerud J; März C; Möller P; O'Regan M; Spielhagen RF (2014) An Arctic perspective on dating Mid-Late Pleistocene environmental history, Quaternary Science Reviews, 92, pp.9-31. doi: 10.1016/j.quascirev.2013.09.023
- Löwemark L; März C; O'Regan M; Gyllencreutz R (2014) Arctic Ocean Mn-stratigraphy: Genesis, synthesis and inter-basin correlation, Quaternary Science Reviews, 92, pp.97-111. doi: 10.1016/j.quascirev.2013.11.018
- Meinhardt AK; März C; Stein R; Brumsack HJ (2014) Regional variations in sediment geochemistry on a transect across the Mendeleev Ridge (Arctic Ocean), Chemical Geology, 369, pp.1-11. doi: 10.1016/j.chemgeo.2014.01.011
- März C; Poulton SW; Wagner T; Schnetger B; Brumsack HJ (2014) Phosphorus burial and diagenesis in the central Bering Sea (Bowers Ridge, IODP Site U1341): Perspectives on the marine P cycle, Chemical Geology, 363, pp.270-282. doi: 10.1016/j.chemgeo.2013.11.004
- Creveling JR; Johnston DT; Poulton SW; Kotrc B; März C; Schrag DP; Knoll AH (2014) Phosphorus sources for phosphatic Cambrian carbonates, Bulletin of the Geological Society of America, 126, pp.145-163. doi: 10.1130/B30819.1
- Dickson AJ; Rees-Owen RL; März C; Coe AL; Cohen AS; Pancost RD; Taylor K; Shcherbinina E (2014) The spread of marine anoxia on the northern Tethys margin during the Paleocene-Eocene Thermal Maximum, Paleoceanography, 29, pp.471-488. doi: 10.1002/2014PA002629
- Wang R; Xiao W; März C; Li Q (2013) Late Quaternary paleoenvironmental changes revealed by multi-proxy records from the Chukchi Abyssal Plain, western Arctic Ocean, Global and Planetary Change, 108, pp.100-118. doi: 10.1016/j.gloplacha.2013.05.017
- Wehrmann LM; Arndt S; Maerz C; Ferdelman TG; Brunner B (2013) The evolution of early diagenetic signals in Bering Sea subseafloor sediments in response to varying organic carbon deposition over the last 4.3 Ma, GEOCHIMICA ET COSMOCHIMICA ACTA, 109, pp.175-196. doi: 10.1016/j.gca.2013.01.025
- Eckert S; Brumsack H-J; Severmann S; Schnetger B; Maerz C; Froellje H (2013) Establishment of euxinic conditions in the Holocene Black Sea, GEOLOGY, 41, pp.431-434. doi: 10.1130/G33826.1
- März C; Schnetger B; Brumsack HJ (2013) Nutrient leakage from the North Pacific to the Bering Sea (IODP site U1341) following the onset of Northern Hemispheric Glaciation?, Paleoceanography, 28, pp.68-78. doi: 10.1002/palo.20011
- März C; Poulton SW; Brumsack HJ; Wagner T (2012) Climate-controlled variability of iron deposition in the Central Arctic Ocean (southern Mendeleev Ridge) over the last 130,000 years, Chemical Geology, 330-331, pp.116-126. doi: 10.1016/j.chemgeo.2012.08.015
- Henkel S; Mogollón JM; Nöthen K; Franke C; Bogus K; Robin E; Bahr A; Blumenberg M; Pape T; Seifert R; März C; de Lange GJ; Kasten S (2012) Diagenetic barium cycling in Black Sea sediments - A case study for anoxic marine environments, Geochimica et Cosmochimica Acta, 88, pp.88-105. doi: 10.1016/j.gca.2012.04.021
- März C; Stratmann A; Matthiessen J; Meinhardt AK; Eckert S; Schnetger B; Vogt C; Stein R; Brumsack HJ (2011) Manganese-rich brown layers in Arctic Ocean sediments: Composition, formation mechanisms, and diagenetic overprint, Geochimica et Cosmochimica Acta, 75, pp.7668-7687. doi: 10.1016/j.gca.2011.09.046
- März C; Vogt C; Schnetger B; Brumsack HJ (2011) Variable Eocene-Miocene sedimentation processes and bottom water redox conditions in the Central Arctic Ocean (IODP Expedition 302), Earth and Planetary Science Letters, 310, pp.526-537. doi: 10.1016/j.epsl.2011.08.025
- Hetzel A; März C; Vogt C; Brumsack HJ (2011) Geochemical environment of Cenomanian - Turonian black shale deposition at Wunstorf (northern Germany), Cretaceous Research, 32, pp.480-494. doi: 10.1016/j.cretres.2011.03.004
- Dellwig O; Leipe T; März C; Glockzin M; Pollehne F; Schnetger B; Yakushev EV; Böttcher ME; Brumsack HJ (2010) A new particulate Mn-Fe-P-shuttle at the redoxcline of anoxic basins, Geochimica et Cosmochimica Acta, 74, pp.7100-7115. doi: 10.1016/j.gca.2010.09.017
- Maerz C; Schnetger B; Brumsack H-J (2010) Paleoenvironmental implications of Cenozoic sediments from the central Arctic Ocean (IODP Expedition 302) using inorganic geochemistry, PALEOCEANOGRAPHY, 25, . doi: 10.1029/2009PA001860
- Kodrans-Nsiah M; März C; Harding IC; Kasten S; Zonneveld KAF (2009) Are the Kimmeridge Clay deposits affected by "burn-down" events? Palynological and geochemical studies on a 1 metre long section from the Upper Kimmeridge Clay Formation (Dorset, UK), Sedimentary Geology, 222, pp.301-313. doi: 10.1016/j.sedgeo.2009.09.015
- März C; Beckmann B; Franke C; Vogt C; Wagner T; Kasten S (2009) Geochemical environment of the Coniacian-Santonian western tropical Atlantic at Demerara Rise, Palaeogeography, Palaeoclimatology, Palaeoecology, 273, pp.286-301. doi: 10.1016/j.palaeo.2008.05.004
- März C; Hoffmann J; Bleil U; de Lange GJ; Kasten S (2008) Diagenetic changes of magnetic and geochemical signals by anaerobic methane oxidation in sediments of the Zambezi deep-sea fan (SW Indian Ocean), Marine Geology, 255, pp.118-130. doi: 10.1016/j.margeo.2008.05.013
- März C; Poulton SW; Beckmann B; Küster K; Wagner T; Kasten S (2008) Redox sensitivity of P cycling during marine black shale formation: Dynamics of sulfidic and anoxic, non-sulfidic bottom waters, Geochimica et Cosmochimica Acta, 72, pp.3703-3717. doi: 10.1016/j.gca.2008.04.025
- Beckmann B; Hofmann P; März C; Schouten S; Sinninghe Damsté JS; Wagner T (2008) Coniacian-Santonian deep ocean anoxia/euxinia inferred from molecular and inorganic markers: Results from the Demerara Rise (ODP Leg 207), Organic Geochemistry, 39, pp.1092-1096. doi: 10.1016/j.orggeochem.2008.03.019