Adaptive ring artifact suppression for tomography applications

D. Jha, H. O. Sørensen, S. Dobberschütz & S. L. S. Stipp
Nano-Science Center, University of Copenhagen
diwaker.jha@nano.ku.dk

Abstract
Small inhomogeneity (0.1% [1]) in the response of individual elements in a 2D X-ray detector can cause ring artefacts on tomogram slices. This is often encountered and hinders image interpretation. In post processing, ring suppression methods in polar space outperform other methods because the transformation to polar space reduces the suppression complexity by converting the rings to linear stripes. However, this requires that the centre of the rings and the origin for the polar transformation are identical. If this is not the case, the existing polar space methods become suboptimal. We have developed a method to overcome this limitation. We use Hough transformation and Gaussian localization to supply proper origin to the polar transformation part. This approach removes the need of making assumptions or manual inputs and functions automatically over large 3D datasets.

Problem
1. Let \((x-a)^2 + (y-b)^2 = R^2\) describe a ring, where \(R\) is the radius of a ring and \((a, b)\) is the centre position. Solving the equation inserting the polar space identities \(x = r \cos \theta\), \(y = r \sin \theta\), we get
 \[
 r = (a \cos \theta + b \sin \theta) \pm \sqrt{(a^2 + b^2) - (a \cos \theta + b \sin \theta)^2}.
 \]

2. Generally, it is assumed that the rings are centred at the centre of the reconstructed tomogram slice [2, 3]. If this is not the case, the condition is satisfied by manually inserting the centre coordinates, which is unpractical for large datasets.

Our approach
1. Read a slice image \(I\) of size \(M \times N\), from a 3D stack.
2. Remove the unnecessary values by thresholding \(T\):
 \[
 I_2(x, y) = \begin{cases}
 I(x, y) \text{ if } |I(x, y)| \geq T \\
 0 \text{ else}
 \end{cases}
 \]
 where, \(T\) is the median value of the image \(I\). \(T\) can also be derived from other thresholding methods.
3. Calculate the gradient image of \(I_2(x, y)\) by convolving with the Sobel kernel and then estimate the direction \(\theta\) of the gradients at each pixel.
4. Perform a Circular Hough transformation using the estimated \(\theta\) values.
5. Crop \(A\) so that the maximum value in \(A\) is in the centre and the total size of \(A\) is \(256 \times 256\).
6. Determine the centre of mass of all the values above the median value in cropped \(A\).
7. Use the position of centre of mass and its intensity as the initial guess to perform a multivariate Gaussian fitting to the values in cropped \(A\).
8. Set the peak of the Gaussian as the origin of polar transformation and suppress the stripes.
9. Repeat the process for all the slices in the 3D stack.

Results
Hough parameter space gives the probability distribution of the centre of the rings (Figure 1).

Conclusions
• Setting a proper origin for the polar space transformation is important for polar space ring suppression methods.
• Gaussian localization of the peak in Hough parameter space gives a good approximation of the origin of the rings.
• Our approach avoids the need to make assumptions or manual input and makes the polar space methods more effective and suitable for automation.
• The method suppresses the ring artefacts from different tomography apparatus and cropped tomograms automatically and can run in parallel.

References

Acknowledgements
We thank Finn Engstroem for providing the samples. The European Synchrotron Radiation Facility and STWing 8 for providing beamtime. The project got financial support from the Danish Advanced Technology Foundation and Macres Oil and Gas A/S through the P\(^2\) project, the Danish Council for Independent Research (via DANISCATT) and the European Commission Marie Curie Initial Training Network (FP7 ITN-MINSC).