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Precipitation dendrites in channel flow
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PACS 68.70.+w – Whiskers and dendrites (growth, structure, and nonelectronic properties)

Abstract – Precipitation on rough walls under a channel flow of a supersaturated fluid can
lead to dendrite pattern formation. A passive advection of a solute has a great influence on the
dendrite morphology similar to the convection effect on the solidification dendrites emerging from
an undercooled liquid. We show how the asymmetric dendrite growth depends on the solute
advection and turbulent mixing. Implications of our study on the generic mineral scale formation
phenomena are also discussed.

Copyright c© EPLA, 2013

Introduction. – The growth of solid precipitating
structures, also known as scale formation, is a common
and costly phenomenon in many industrial processes that
deal with water or other fluid-handling systems (i.e. wells,
heat exchangers, tanks and delivery lines, etc.), where
mineral precipitation in pipes, on equipment or as fracture
filling has a detrimental effect on process efficiency, cost
and lifetime of processing technologies. Scale formation
is encountered in a large number of industries including
paper-making, chemical manufacturing, cement opera-
tions, food processing, as well as non-renewable, (i.e., oil
and gas [1]) and renewable (i.e., geothermal, see fig. 1)
energy production and medical instruments.

Albeit precipitation patterns have been theoretically
studied for many decades, most of the matter-of-fact
concerns regarding the controlling factors that influence
scale formation or inhibition in pipelines, and the effect
this may have on the coexisting corrosion processes are
still open to investigations. In particular, many of these
pipelines can sustain turbulent flows and, in this regime,
the effect of turbulent mixing on mineral scale formation
is not yet fully explored and understood.

Interestingly, many of the precipitation patterns are
rather robust with respect to changes in the detailed
aqueous chemistry and interfacial composition, and often
similar to the surface patterns developed during freezing
from a supercooled liquid [2,3]. The similarity between
different freezing and precipitation morphologies suggests
a deeper connection between these deposition mechanisms,

and the possibility of modelling deposition pattern for-
mation within a generic theoretical framework. In fact,
there are several approaches to modelling the dynamics of
liquid-solid interfaces, among the most common ones be-
ing based on boundary tracking methods, such as the level
set method, e.g. [4] and the phase-field method, e.g. [5].

Numerous studies document that solidification patterns
using phase-field modelling [5,6] have similar properties as
those observed in nature and experiments [7,8]. Recently,
a phase-field model for precipitation has been proposed as
an efficient tool to study surface morphology developed
by precipitation from a supersaturated solution [9,10].
For certain conditions of supersaturation and interfacial
energy, the precipitation surface develops dendritic struc-
tures similar to those developed during solidification from
an undercooled liquid in hydrostatic equilibrium.

Motivated by the problem of mineral scaling in the
presence of turbulent mixing, we study the precipitation
dendrite morphologies under different hydrodynamic con-
ditions using a phase-field approach combined with the
lattice Boltzmann method. Albeit, the effect of laminar
flow on solidification dendrites is well studied [11–13],
the non-laminar regime that allows for turbulent mixing
downstream of the crystal growth remains virtually un-
charted. The shear flow has a great influence on the rate
of growth of the crystal, as well as on the orientation of
the dendrites with respect to the main flow direction, and
the spacing between dendritic branches. Also, the lateral
growth of dendrites is enhanced in the upstream direction,
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Fig. 1: (Color online) Amorphous silica (SiO2) mineral pre-
cipitation from geothermal waters in a retention tank at the
Nesjavellir Power Plant, Iceland (from ref. [14]). Bulk flow
velocity is 0.03–0.06 cm/s depending on operating conditions.

and suppressed in the downstream when the flow remains
relatively smooth. Our aim is to investigate the effect of
non-laminar downstream flow on the dendrite morphology.

The rest of the paper is organized as follows: In the sec-
ond section, we introduce a two-dimensional (2D) model
of crystal growth nucleated on one of the pipe walls under
laminar and turbulent flow. We continue in the third
section with a numerical implementation of this model
based on a coupling between a phase-field method for
surface precipitation and an augmented lattice Boltzmann
method for turbulent flows. The fourth section presents
the numerical results on the precipitation dendrites and
the influence of solute advection and turbulent eddies on
the growth rate and dendrite morphology. Finally, we offer
a discussion and concluding remarks in the fifth section.

Precipitation under flow. – We study the coupling
of surface precipitation with fluid flow in a 2D setup corre-
sponding to a longitudinal cross-section of a pipe of diam-
eter H and length L. For simplicity, we consider that the
pipe is horizontal and the effect of gravity is neglected, i.e.

the regime of precipitation growth is isolated from that of
sedimentation of the solute particles. On one of the walls,
there is an initial asperity represented by a half circle of
small radius and located in the middle of the pipe length.

A supersaturated fluid is injected at the pipe inlet
and removed at the outlet. The soluble particles are
described by a concentration field c(x, y, t) that satisfies
the diffusion-advection equation

∂c

∂t
+ vf · ∇c = D∇2c, (1)

where D is the solute diffusivity coefficient and vf is the
fluid velocity. We assume generic first-order kinetics at the
wall side with an asperity located at (x, y) = Γt, where Γt

is a parametrization of the precipitation surface. Thus,
the boundary condition at the reactive site is

D∇c · n = k(c − ceq), on Γt, (2)

since v · n = 0 at Γt meaning that the crystal is
impermeable to the moving fluid. Here, k is a constant
reaction rate, ceq is the equilibrium concentration, and
n is the surface normal unit vector pointing towards the
fluid phase. We assume that the walls are inert and rigid,
i.e. no solute diffusion or deformation inside the walls.
Equation (2) expresses that the mass transport to the
surface equals the rate of precipitation. By this process,
the interface advances into the fluid with a normal velocity
(vn) that is given by

ρsvn = kρf (c − ceq), on Γt, (3)

with ρs being the mass density of the solid. The pipe
flow of an incompressible fluid is described by the Navier-
Stokes equation

∂vf

∂t
+ vf · ∇vf = −

1

ρf

∇p + ν∇2vf , (4)

where p(x, y, t) is the pressure field, ν is the uniform
kinematic viscosity, and ρf < ρs is the constant fluid
density which results, by the conservation of mass, in a
solenoidal velocity field condition ∇ · vf = 0.

We use zero-flux boundary conditions on the lateral
walls, y = 0 and H, for the pressure and concentration
fields, and no-slip boundary conditions for the velocity
field. The concentration field is constrained by the surface
growth conditions given by eqs. (2), (3) and applied on Γt.
At the inlet x = 0, the injected fluid has a fixed Poiseuille
velocity profile and a given supersaturation level of the
concentration field c > ceq. Initially, the concentration is
uniform and equal to equilibrium value everywhere else
away from the pipe inlet. The supersaturated fluid is
then removed at the outlet by setting open-flux boundary
conditions at x = L.

Using a typical lengthscale x0, timescale t0 and equi-
librium concentration ceq, all the dimensional variables
can be converted into dimensionless forms as t̃ ≡ t/t0,
x̃ ≡ x/x0, c̃ ≡ (c−ceq)/ceq, p̃ ≡ p/p0, ṽ ≡ v/v0, and ṽn ≡
vn/v0, where v0 = x0/t0 and p0 = ρfx2

0/t20. By inserting
the rescaled variables into eqs. (1)–(4) and dropping the
tildes, the following set of evolution equations is obtained:

∂c

∂t
+ v · ∇c =

1

Pe
∇2c,

∂v

∂t
+ v · ∇v = −∇p +

1

Re
∇2v, (5)

which is complemented by the aforementioned boundary
conditions and the rescaled interfacial conditions given as

n · ∇c = Da · c,

vn = β
Da

Pe
c, on Γt, (6)

where β = ceqρf/ρs. The group of dimensionless param-
eters governing the transport and precipitation kinetics
is given by the Péclet number Pe = v0x0/D, that is
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the ratio of the rate of fluid advection to the rate of
solute diffusion, the Reynolds number Re = x0v0/ν, that
measures the fluid advection relative to viscous transport,
and the Damköhler number Da = kx0/D, that measures
precipitation rate relative to the diffusion transport rate.

A typical lengthscale that remains constant is, for
instance, the diameter of the pipe, so we can set x0 ≡
H. A typical flow velocity can be set by the injection
velocity v0 ≡ V . Also ρf/ρs ≈ 1/2, but the equilibrium
concentration (mass fraction) is typically a small number
ceq ∼ O(10−3). So, β would be, in general, a small
number. In the regime where Da � Pe, we can safely
assume that vn ≈ 0, given that also β � 1. For
surface growth, we are interested in the opposite limit
corresponding to Da � Pe, which is equivalent to v0 � k,
or that the typical flow velocity is much smaller than
the kinetics rate (notice that the interfacial kinetics rate
has units of [k] = m/s as velocity). From this point
of view, fast-growing dendrites are observed when the
precipitation growth happens on a much faster timescale
than the typical fluid flow. This allows the underlying
effects of advection and Re number on the morphology to
be studied on much shorter simulated timescales.

Phase field and lattice Boltzmann. – We use a
phase-field method to efficiently track the precipitation
front. The phase-field modelling has been extensively used
as a powerful tool to handle the evolution of complex
microstructures. Various thermodynamically consistent
formulations have been proposed for the dendritic so-
lidification problems, but they have similar numerical
properties [5,15]. Recently, a phase-field formulation of
a precipitation front has been proposed in refs. [9,10] in
the absence of fluid flow. Here we extend the model
to also include this effect. The evolving precipitation
surface is tracked as the zero level of an auxiliary phase
field φ(x, y, t) which varies rapidly across the liquid-solid
interface, and takes homogeneous values in the bulk phase,
φ = −1 in the solid and φ = 1 in the fluid. In the
dimensionless form, the governing equations for the phase
and concentration fields read as

∂φ

∂t
=

Per

Pe

(
∇2φ − κ|∇φ|

)
−

∂f

∂φ
,

∂c

∂t
+ v · ∇c =

1

Pe

∇2c +
1

2β

∂φ

∂t

+
Pe

2βDa

∂φ/∂t

|∇φ|

(
1

Pe

∇2φ −
∂φ

∂t

)
, (7)

where P−1
er = Dτ/ε2 is the interfacial Pe number, de-

fined in units of the interface thickness ε and phase-field
characteristic timescale τ , κ = ∇ · (∇φ/|∇φ|) is the local
curvature, and f(φ, c) = λc(φ − φ3/3) − φ2/2 + φ4/4 is
the local free energy that has two minima corresponding
to the liquid and solid phases. Equation (7) includes two
additional terms that implicitly represent the interfacial
boundary conditions. The first term acts as a net source
or sink of solute due to the discontinuity in the solute

concentration gradient across the interface, whereas the
second term corresponds to a net flux of solute arising from
the discontinuity in the solute concentration across the
interface. As shown in ref. [9], the phase-field formulation
in eqs. (7) converges in the limit of Per → 0 to the sharp-
interface equations (5), (6). These partial differential
equations are solved on a regular grid using an isotropic
finite difference method where both nearest- and next-
nearest-neighbouring grid points are considered.

The pipe flow is numerically simulated using the lattice-
Boltzmann-method–type LBGK [16] with 9 principal di-
rections in 2 dimensions (D2Q9). This is augmented
with a subgrid model to effectively resolve the turbulent
energy transport at high Re numbers at lengthscales
below the grid resolution. In this case we implement
the Smagorinsky subgrid model [17,18] which modifies the
local viscosity νeff to include a turbulent or eddy viscosity
νeff = ν + νt, ν being the kinematic viscosity the eddy
viscosity νt is calculated from the filtered rate of strain
tensor ε̇i,j = (∂jvi + ∂ivj)/2 as νt = (CsΔ)2ε̇, where

ε̇ =
√

2
∑

i,j ε̇ij ε̇ij , Δ is the filter width, and Cs is the

Smagorinsky constant.

To implement no-slip conditions at the solid-liquid
interface we use bounce-back boundaries in the lattice
Boltzmann model. The position of the interface within
the lattice Boltzmann is constantly updated by setting all
cells with φ < 0 as solid which adhere to the bounce-
back rules. Within the liquid part of the moving interface
the velocity is dissipated by increasing the viscosity, i.e.

ν = ν02/(1 + φ), as φ → 0 [19].

The implementation of the lattice Boltzmann model is
benchmarked against known solutions for pressure-driven
channel flow for low and high Re numbers, the error cor-
responds to that obtained for by other implementations of
the same type [20]. Further tests regarding the generation
of turbulent structures shows qualitative agreement when
compared against results generated for flow past including
objects [16].

Results and discussion. – In order to simulate
the effect of diffusion, advection and turbulence upon
the morphology of precipitating structures we perform a
number of simulations for various Pe and Re numbers.

In fig. 2, we depict the effect that fluid transport has on
the dendrite morphology. The fluid streamlines and the
concentration profile away from the precipitation dendrite
for different Pe and Re numbers are shown in fig. 3. The
precipitation area that protrudes furthest into the high
flow region experiences the highest advection rates, and
hence the steepest concentration gradients. Downstream
of this area, a separation of flow rates, caused by the
barrier which the growth presents to the fluid, creates a
region of low fluid velocity where advection is negligible.
Figure 4 shows the evolution of the growing structure,
and the clear asymmetry in the growth as advection takes
over the diffusive transport of the solute. The average
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Fig. 2: (Color online) A sketch of the setup and the anisotropic
dendrite growth due to fluid advection.
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Fig. 3: (Color online) Normalized concentration field with the
fluid streamlines superimposed. Inside the crystal the rescaled
concentration relaxes to the equilibrium value, whereas far
away from the interface it reaches a constant supersaturation
level in the fluid.
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Fig. 4: (Color online) Evolution of the precipitated growth for
various Pe and Re numbers. Contour lines show the position
of the precipitation front at different times.
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Fig. 5: (Color online) The angle of growth plotted at a fixed
time for different values of Pe and Re numbers. The curves
trace the numerical data points using a spline interpolant.

asymmetric growth angle about the location of the initial
rough element is calculated in fig. 5. The nature of the
curve is a result of the competition between different
transport timescales. The initial symmetry at low Pe
numbers is related to the diffusion-dominated growth.
The advective transport increases the growth rate in the
region it affects, hence maximum asymmetry occurs when
advection affects only the main dendrite tip (Pe = 1–5).
At higher advection rates (Pe > 5) a larger area is
affected and symmetry increases. Further discussion will
therefore refer to the effects various flow regimes have on
this asymmetry, and this can be divided into several key
segments (see fig. 2 for reference).

Diffusion-dominated Pe < 1. The precipitation re-
action removes the dissolved precipitate from the fluid
producing a solute-depleted region near the interface.
Advection and diffusion are the main transport processes
by which the depleted concentration is advected or redis-
tributed. For Pe < 1, advection has a negligible effect, as
the system is dominated by diffusive transport that leads
to a symmetric redistribution of the solute depletion, and
thus the growth is also axial symmetric.

Transition region Pe = 1–5. The transition region be-
tween the diffusion-dominated and advection-dominated
regimes produces most asymmetric dendritic growths.
With increasing Pe number, the advection becomes dom-
inant especially at the furtherest upstream tips of the
precipitation dendrites, where the lower supersaturation is
advected downstream, and, henceforth, replaced by higher
levels of supersaturation that promotes faster growth.
Consequently, the areas immediately downstream of this
are either supplied with less supersaturated fluid, or lower
flow rates behind an obstacle and diffusion-dominated
growth. In both cases, the precipitation surface is re-
stricted to grow slower downstream then upstream, which
produces the observed asymmetry.
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Advection-dominated Pe > 5. Higher rates of advec-
tion expose a greater section of the surface to supersat-
urated fluid, while the more solute-depleted fluid is ad-
vected downstream. This effectively increases the areas of
faster growth into the downstream direction, thereby the
growth asymmetry is overall reduced. In the asymptotic
limit of Pe → ∞, the flow rate becomes so high that
the depleted supersaturation is “instantly” advected away
from the precipitation site. At low Re numbers, the stand-
ing vortex formed will still force an area of the solid surface
to exist in a diffusion-dominated regime, hence we suspect
that the crystal growth will never become fully symmetric.
This is indicated by the curves in fig. 5 for lower Re
numbers, where the curves appear to saturate at high Pe.

Effect of Re number. The effects caused by increas-
ing Re number are two-fold. Firstly, the precipitation
dendrite represents an obstacle in the fluid flow, causing
lower flow velocities and a large standing eddy to form
downstream behind the obstacle (see the streamlines in
fig. 3). With increasing Re number, the size of this
downstream region expands, and isolates a greater region
of the solid surface. With little advection the growth is
diffusion dominated and slow relative to advected areas.
Increasing Re number therefore promotes asymmetry as it
forces a larger quantity of the surface downstream to grow
less rapidly. The second impact is observed within the
velocity field as the fluid approaches the solid boundary.
At higher Re numbers, the gradients of the velocity field
are much sharper at the boundary due to no-slip boundary
conditions. This forces a greater portion of the solid
surface to experience high advection rates, specifically in
the areas further upstream of the fastest-growing point. In
turn, this pushes a greater quantity of depleted fluid down-
stream further reducing the growth rates in the area imme-
diately adjacent to the fastest-growing regions, see fig. 4.

Turbulence. Turbulent eddies are generated by the
induced surface dendrites generated from precipitation.
At high Re numbers, the stable vortex, that forms down-
stream and behind the dendrite, evolves into a turbulent
puff where eddies shed from the grown structure and
propagate downstream. Thus, the precipitation of the
downstream side of the dendrite is directly affected by the
concentration mixing inside the turbulent puff. Turbulent
mixing promotes effectively an isotropic transport of su-
persaturation, and, in this regime, the advective transport
can be modelled as an effective isotropic diffusive process
with an enhanced, effective solute diffusivity that depends
on the flow pattern [21].

The enhanced turbulent diffusivity and isotropic distri-
bution of concentration gradients accelerates the growth
rate on the downstream side, and reduce the overall
asymmetry of the pattern. This can be clearly seen
in fig. 4, where dendrites on the right-hand side are
more prominent for high Re numbers. The size of the
area affected by turbulent mixing is dependent upon the
orientation angle at which the main dendrite (which blocks

Fig. 6: (Color online) Normalized concentration field for pre-
cipitation growth upon a pipe wall with randomly distributed
rough elements. Pe = 10, Re = 10000 (top), Re = 100
(bottom). The superimposed black lines correspond to fluid
streamlines (flow from left to right), whereas the white lines
represent the time evolution of the precipitates by showing the
position of the precipitation surface at different times.

the flow) grows relative to direction normal to the flow. At
shallow orientation angles, a greater region downstream of
the blocking dendrite experiences the enhanced diffusivity
due to turbulent mixing. Figure 5 shows that for a small
window of shallow growth angles, turbulence causes the
curve for Re = 10000 to become more symmetric than
the curve for Re = 5000. With increasing Pe number,
the turbulent puff promotes more downstream mixing to
occur on a timescale considerably shorter then the growth
rate. It may be assumed that the growth would therefore
once again become symmetric as Pe → ∞. However,
since the mixing in the turbulent puff depends upon
a shallow growth angle, a symmetric state may never
be reached. Here, the high growth angles prevent the
turbulent eddies from altering the concentration gradients
in every direction, and asymmetry is therefore maintained.

Rough interface. – Precipitation in pipe flows can
nucleate at any asperity on the pipe walls, and the
interaction between different growing sites through the
flow field around them can generate new effects and
morphologies that are not captured by the dynamics of an
isolated precipitate. Henceforth, it is interesting to extend
our model to also include the precipitation on a rough
interface. In fig. 6, we show few preliminary results on the
morphology of an evolving rough interface that initially
consisted of 14 asperities of an equal size, and that are
randomly and uniformly distributed along one of the walls.
We notice that the non-laminar downstream flow has a
drastic effect on downstream precipitates. More compact,
columnar structures are promoted with increasing Re
number due to turbulent mixing. We also observe long-
range interactions mediated by the surrounding flow field
and a “screening” effect that the precipitates induce on
each other. A detailed analysis of the correlations between
evolving precipitates in turbulent pipes and a comparison
with the precipitates formed in hydrothermal pipelines
(fig. 1) constitute however the subject of another report.

Conclusion. – Precipitation upon a single rough ele-
ment within a pipe has been simulated at high advection
rates and turbulent Re numbers by coupling a phase-field
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method for precipitation and a lattice Boltzmann method
for fluid flow. We have shown that the morphology and
growth orientation of the precipitate is greatly influenced
by the flow conditions. At low advection rates, where
diffusion controls the system, the precipitation dendrites
grow symmetrically. As the advection increases relative
to diffusion, the system becomes rapidly asymmetric since
a small portion of the solid surface becomes exposed to
supersaturated fluid. This promotes the precipitate to
grow upstream relative to the flow direction. Maximum
asymmetry and shallowest normal growth occur in the re-
gion where advection overtakes diffusion as the dominant
transport mechanism. Higher advective transport reduces
the growth asymmetry due to the efficient transport of the
depleted solute. Furthermore, with increasing Reynolds
number the growth asymmetry also increases, however,
the turbulent mixing at high Re numbers leads to a more
symmetric growth.

Our results also show that the fast precipitation domi-
nated by advection leads to more compact growth struc-
tures that tend to develop less dendritic branching, as
seen from figs. 3 and 4. This compact growth occurs
over a larger area for higher Re numbers where steep
velocity gradients expose more of the solid interface to
high advection rates. Turbulent mixing away from a
precipitation site has a major effect on the columnar
growth of the downstream precipitates.

Mineral scale formation often leads to the generation of
rough internal pipeline surfaces. It occurs in a wide variety
of systems at a wide range of fluid flow rates and Reynolds
numbers and the growth of rough walls further complicates
the flow dynamics. This is the first attempt to couple
mineral precipitation and hydrodynamics for pipeline flow
rates above the strictly laminar regime.
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