Precipitation dendrites in non-laminar pipe flows **Christopher Hawkins** Luiza Angheluta, Bjørn Jamtviet Physics of Geological Processes, Department of Physics, University of **Oslo**, Norway

Mineral scaling in pipelines

- Mineral scaling (precipitation) in pipelines causes clogging reducing flow efficiency
- Phenomenon common in nature as well as in man-made systems (pipelines, boilers, etc)
- Costly and time consuming process to remove
- Can we understand the growth through simulations

Heat Exchanges from Geothermal power plant, Iceland

- Precipitation buildup over time reduces effectiveness of heat exchange
- Flow rate reduced from lower cross section

Comparison of simulated and true life precipitation in pipes

Simulated precipitation structures

Samples of precipitation from hydro-thermal pipelines in Iceland

Growth tilts towards flow, Branched growth in upstream direction, Smooth surface downstream

Precipitation dendrites in channel flow – Christopher Hawkins, Øyvind Hammer Luiza Angheluta, Bjørn Jamtveit – EPL 102 54001 (2013)

Model to simulate reactive flow

Fluid flow –

Navier-Stokes equations solved using Lattice Boltzmann

$$\rho\left(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u}\right) = -\nabla p + \mu \nabla^2 \mathbf{u} + f$$

Precipitation – Interface tracking and first order reactions simulated using Phase-field model

At the interfaceIn the bulk
$$\frac{\partial c}{\partial t} = -Kc$$
 $\frac{\partial c}{\partial t} = D\nabla^2 c - \mathbf{u} \cdot \nabla c$

Setup for pipe flow with precipitation

No Flux, no slip on pipe walls

Nucleation sites

- Conditions intended to match real reactive flow in pipelines
- Randomly spaced nucleation sites negate any resonance effects
- Can we understand the mechanisms which affect real systems by using simulations?

Evolution of concentration field and precipitating solids in pipe flow

Pe = 10, Re = 1000 Gradient – Concentration field Black – Precipitated Solid

Competition of advection, diffusion and turbulent mixing determines observed morphology

Simulated dendrite phase diagram

Difference in morphology for various changes in physical parameters (orientation, shape, growth rate)

Diffusion limited growth

- Symmetric growth
- Fingering (Dendrites) from competition of dendrites experiencing diffusion limited growth

Effect of Advection upon morphology

Pe = 2

Pe = 5

- Advection causes dendrite to grow towards flow
- Max angle where Advection and diffusion rates are equal (Pe 1)
- Return to symmetric growth as Pe -> Infinity

Effect of Advection upon concentration

Advection - Shifts point of steepest concentration gradient from max angle back towards 90 degrees

Effect of Turbulent Mixing upon morphology

Re 100 Re 10,000

Turbulent mixing – Increases effective diffusion rate in all turbulent areas

Areas of turbulent mixing

- Turbulent mixing generated downstream of solid structures
- Enhanced diffusion in this area = Faster dendrite like growth

Conclusion - precipitation in pipe flow

Morphology of precipitating structures controlled by: Diffusion, Advection & Turbulent Mixing

- Diffusion Causes symmetric, dendritic (finger like) growth
- Advection Accelerates growth in direction of flow
- Turbulent Mixing Enhances diffusion downstream solid structure

Hydrodynamic shadowing effect during precipitation of dendrites in channel flow – Christopher Hawkins Luiza Angheluta, Bjørn Jamtveit – PhysRevE.89.022402 (2014)