Co-evolutionary of technologies, institutions and business strategies for a low carbon future

Dr Timothy J Foxon Sustainability Research Institute, University of Leeds, Leeds, U.K.

'Complexity economics for sustainability', Seminar 1, Oxford, 27-28 November 2008

Outline

- Introduction: complexity economics
- Need for a co-evolutionary, multi-level framework
- Key research and policy challenges
- Transition pathways to a low carbon economy
- Conclusions and further research

Complexity economics: sources

- Evolutionary and institutional economics
 - Path dependency and lock-in ('history matters')
- Ecological economics
 - Situate human economic systems within environmental systems providing resources and waste assimilation
- Behavioural economics
 - Bounded rationality of decision-making
- Complex systems thinking
 - Network interactions and emergent properties
- Social shaping of technological change
 - Influence of institutions and ways of thinking

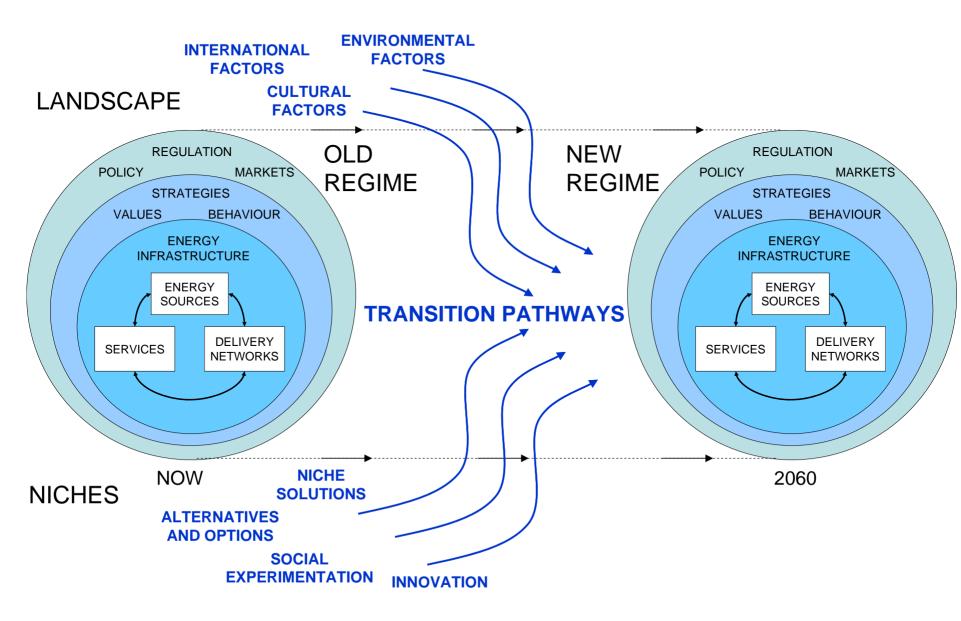
Economies as complex adaptive systems

• Dynamics:

- economies are open, dynamic systems, far from equilibrium;
- Agents:
 - made up of heteorogeneous agents, lacking perfect foresight, but able to learn and adapt over time;
- Networks:
 - agents interact through various networks;
- *Emergence*:
 - macro patterns emerge from micro behaviours and interactions;
- Evolution:
 - evolutionary processes create novelty and growing order and complexity over time.

Co-evolutionary, multi-level framework

- Understanding and analysing transition pathways to a low carbon economy
- Co-evolutionary approach
 - Co-evolution of technologies, institutions, business strategies and user practices
- Multi-level framework
 - Interactions between macro, meso and micro levels
- Draws on insights from three research areas:
 - Socio-technical transitions (Kemp, Rotmans, Geels)
 - Technological innovation systems (Jacobsson, Bergek, Hekkert)
 - Co-evolution of technologies and institutions

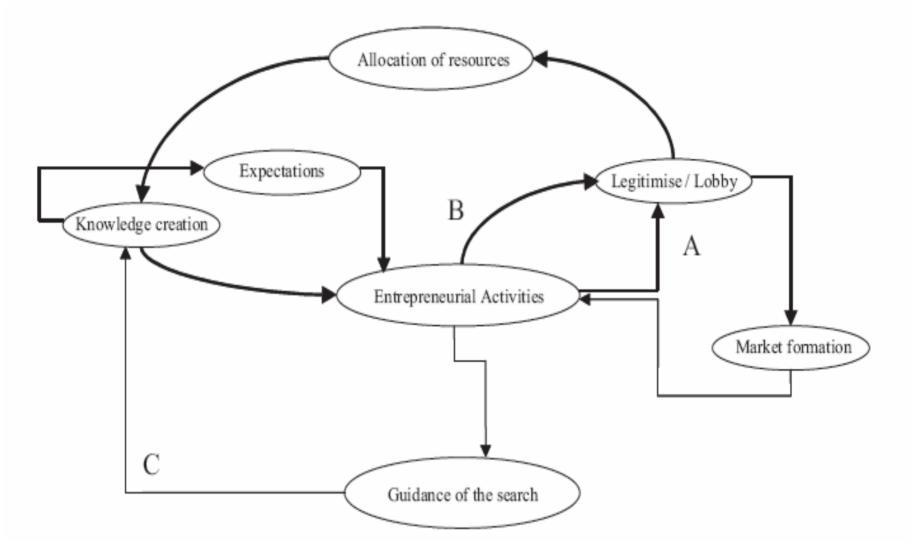

Socio-technical transitions approach

- (1) Analysing historical dynamics of transitions using multi-level perspective:
 - Landscape: broader cultural values and institutions
 - Socio-technical regime: prevailing set of practices, technologies, skills, institutions, infrastructures
 - Niches: Spaces partially isolated from regime where technological and social learning can occur

(2) Transition management as process of governance

- Modulate dynamics of transitions through interactive, iterative processes between networks of stakeholders
- Shared visions and goals; transition experiments
- 'Transition arena': innovation-oriented stakeholders

Developing and analysing transition pathways


Technological innovation systems (micro-meso level)

- Technological innovation systems
 - Range of actors and interactions (both market and non-market) leading to production, diffusion and use of new, and economically useful, knowledge
 - Actors exhibit bounded rationality, uncertainty about future
 - Processes of learning and expectations about future markets and technological improvements
 - Institutional factors (social rule systems) create drivers or barriers to innovation
 - 'Virtuous' or 'vicious' cycles arise through positive or negative feedbacks

Functions of innovation systems

- Analysis of how innovations at micro level, within niches, challenge dominant regime at meso level
- Functions of innovation systems:
 - Entrepreneurial activities
 - Knowledge development
 - Knowledge diffusion through networks
 - Guidance of search activities
 - Market formation
 - Mobilization of resources
 - Creation of legitimacy /overcoming resistance to change
- Virtuous and vicious cycles

Virtuous cycles between key process in technological innovation systems

Source: Hekkert et al., 2007

Co-evolutionary approaches (meso-macro)

- Co-evolution of technologies and institutions
 - 'Carbon lock-in' arises through co-evolution, driven by path-dependent increasing returns to adoption (Unruh)
- Co-evolution of technologies, institutions and firms' strategies
 - Historical study of synthetic dye industry (Murmann)
 - Take-up of renewable energy (Stenzel et al.)
 - Sustainability-driven entrepreneurs (Parrish and Foxon)
- Co-evolution of physical technologies, social technologies and business plans
 - Institutions as 'social technologies' (Nelson)
 - Driving creation of wealth through innovation of physical and social technologies (Beinhocker)

Co-evolutionary framework

- Two evolving populations co-evolve if and only if they both have a significant causal impact on each other's ability to persist
 - By altering selection criteria, or
 - Changing replicative capacity of individual entities
- Incorporates basic evolutionary economic concepts
 - Bounded rationality, diversity, innovation, selection, path dependency and lock-in, co-evolution
- Co-evolution of technologies, institutions, business strategies and user practices
 - Roles for both agency and structure in causal influences
 - Linking macro, meso and micro levels

Key research and policy challenges

- Inform mix of policy measures to promote successful innovation and diffusion of low carbon technologies (micro-meso level)
 - Address system failures in innovation systems
 - Maintain diversity, whilst ensuring that promising options benefit from increasing returns and learning effects
- Assess implications for economic growth of a transition to a low carbon economy (macro-meso)
 - 60% reduction in global CO₂ emissions by 2050 would reduce global GDP by 1-2% (Stern review)
 - Difficulties in overcoming techno-institutional lock-in?
 - Shift in energy investment portfolios

Innovation of renewable energy technologies

- Role of incumbent firms in take-up of renewable technologies in Germany, Spain and UK (Stenzel et al.)
 - Germany: dual-track strategy of investing in renewables, but also lobbying against support mechanisms
 - Spain: virtuous cycle as price support provided selective pressure for investment in wind farms, development of technological capabilities and lobbying for further support
 - UK: incumbents squeezed out small firms, but wind power remains niche activity
- Sustainability entrepreneurs in US (Parrish and Foxon)
 - Innovative business strategy helped to enable adoption of small-scale renewables by local communities
 - Help create institutional niche, favouring selection of similar business strategies

Transition pathways to a low carbon economy

- New project developing and analysing transition pathways to a low carbon energy system in UK:
 - (1) Characterise existing energy regime, its internal tensions and landscape pressures on it:
 - (2) Identify dynamic processes at the niche level:
 - (3) Specify interactions giving rise to transition pathways
- Dominant drivers of change:
 - Institutional innovation for legally-binding carbon reduction targets on path to 80% reduction by 2050
 - Leads to selection pressures in favour of low carbon technologies, and changes to business strategies
 - Lobbying by dominant energy firms to replicate existing regime by new nuclear and coal power stations

Potential transition pathways

1) Later-action/centralized generation systems:

- Energy companies focus on large-scale technologies: nuclear power, offshore wind and capture-ready coal
- Overseas investment counts towards UK targets

2) Later-action/decentralized generation systems:

- Technical, social and economic concerns lead to renewed interest in decentralized options
- 3) Early-action/centralized generation systems:
 - Strong institutional support for domestic investment in centralized generation technologies
- 4) Early-action/decentralized generation systems:
 - Local leadership in decentralized options

Development of formal, multi-level evolutionary economic models

- Limited development so far of evolutionary economic models:
 - Evolutionary models of economic change (Nelson/Winter)
 - 'History-friendly' models of industry evolution (Malerba)
 - Selection-innovation dynamics models (Safarzynska and van den Bergh)
- Apply co-evolutionary framework
 - General approach, within which additional layers of complexity can be applied

Conclusions

- Framework for examining
 - co-evolution of technologies, institutions, business strategies and user practices
 - for a transition to a low carbon economy
- Analysing causal mechanisms by which
 - activities within one system influence the selection criteria and replicative capacity within other systems
- Multi-level approach, combining
 - Micro-meso level analyses of innovation and diffusion of low carbon technologies
 - Macro-meso level assessments of implications for economic growth of a transition to a low carbon economy