Mantle Anisotropy at Mid-Ocean Ridges

Andy Nowacki, Michael Kendall, James Wookey

(Nowacki et al., EPSL, 2011)
Plate spreading and seismic anisotropy

Hess, 1964
MOR Anisotropy

Anisotropy due to LPO versus Aligned Melt
Simple plate spreading

Buoyant Flow, Melt Production (1% CI)

Temp C

1200
1000
800
600
400
200
0

2.5D spreading center:
Flow rift perpendicular

Flow pattern controlled by:
- Spreading rate
- Mantle viscosity
- Melt production
LPO anisotropy controlled by:
- Spreading rate
- Mantle viscosity
- Mineralogy

Shear-wave splitting:
- Increases off-axis
- Fast SW polarisation parallel spreading

Melt adds additional component to anisotropy

Blackman and Kendall, G3, 2002
Simple plate spreading

SKS Splitting at the EPR (Wolfe and Silver, 1998; Harmon et al. 2004)

2.5D spreading center: Flow rift perpendicular

Model predicts rift-perpendicular orientation off-axis (large δt).

δt
• **EPR** anisotropy is very different from **MER** anisotropy
 – Continental rift versus oceanic spreading center?
 – Spreading rates?
• Difficult to measure SKS splitting at **MORs** – instead use source-side SWS.
Source side splitting
(Nowacki et al., Nature, 2010)

Splitting from UM anisotropy below source

Δ = 60–85°

Additional splitting from UM anisotropy beneath receiver

Earthquake

Seismometer

Upper mantle

Lower mantle

S

Outer core

SKS
Events and Stations
NWK methodology

Rigorous data selection and quality control:
- Receiver anisotropy must be simple and well characterised.
- Where possible use data from similar azimuths for both S and SKS.
- High-quality measurements, low error, clear signal and anisotropy.
- Inferred source polarisation must agree with CMT solution for the earthquake.

Nowacki, Wookey and Kendall, Nature 2010
Results
East Pacific Rise - source-side splitting

- Best sampled segment
- Results agree with Wolfe and Solomon (1998) and Harmon et al. (2004), but split magnitude is larger
- Ridge parallel (>50km) – $dt=1-3s$
- Transforms much more complicated
Mid Atlantic Ridge - source-side splitting

- Limited in latitude (-40 to 15)
- More complicated than EPR
- Ridge parallel (e.g., -30 degs); smaller than EPR
- Variations along transforms; magnitudes higher near ridge segments
Gakkel Ridge - source-side splitting

- Only 10 good results
- Plus 10 good nulls
- Smallest amounts of splitting
- Gakkel is mostly ridge parallel
- Some evidence of asymmetry
- South West Indian Ridge is similarly complicated (oblique spreading)
EPR S-wave vs SKS splitting - modelling

- Modelling B&K-02: S (red lines); SKS (blue lines); note raypath incl and Az are different
- B&K-02 predictions agree with SKS results (W&S - 98 and Harmon et al. - 04)
- S-splits are much larger – solution: TI anisotropy due to melt alignment?
Stress driven melt segregation
- most effective at flanks (marginal LAB)
Melt and the LAB

Slow spreading – steep sides
- GAKKEL- MER
- SKS very sensitive to melt anisotropy
- MER much more melt production
- Along strike flow?

Fast spreading – subhoriz LAB
- EPR
- SKS not sensitive to melt
- S and surface waves are sensitive to melt anisotropy
- Melt enhances LAB
Mechanisms for MER anisotropy:

- Large-scale flow beneath eastern Africa associated with super-swell.
- Melt focused at plate boundaries - leads to oriented vertical pockets of melt.
- Contribution from pan-African fabric in lithosphere away from rift.

Kendall et al., 2006
Conclusions

- Source-side shear-wave splitting provides global comparison of MOR anisotropy
- Off-axis splitting is generally ridge perpendicular (Gakkel is perhaps exception; Reykjanes Ridge? – along strike flow?)
- Delay times increase off axis; correlation with spreading rate
- More complicated near transform faults (patterns?)
- Melt needed to explain discrepancies between S and SKS splitting (EPR)
- Melt focused at marginal LAB
- Melt hypothesis compatible with surface-wave radial anisotropy (Nettles and Dziewonski 2008) and SRFs (Rychert and Shearer, 2009; Kawakatsu et al., 2009)