# Two Decades of InSAR Observations in the Kivu Basin, Western Branch of East African Rift

Nicolas d'Oreye<sup>1,2</sup>, Sergey Samsonov<sup>2,3</sup>, Valerie Cayol<sup>4</sup>, Christelle Wauthier<sup>5</sup>, François Kervyn<sup>6</sup>, Benoît Smets<sup>2,5,6</sup>



1 National Museum of Natural History, Luxembourg



2, European Center for Geodyanmics and Seismology, Luxembourg



3, Canada Centre for Remote Sensing



4, Lab. Magma & Volc, Univ. Blaise Pascal, France



5, Royal Museum for Central Africa, Belgium



6, Vrije Univ. Brussels, Belgium

# Two decades of SAR: overview

What InSAR taught us about rift activity:

#### Case studies:

- 2002 Nyiragongo eruption
- 2008 Bukavu-Cyangugu Earthquake
- (2011/12 2010 2006 Nyamulagira eruptions)
- (Former eruptions: 2004, 2002, 1998, 1996 see e.g. C. Wauthier PhD, 2011)
- New opportunity offered by dense SAR database:
  - Multipath & multi sensors time series
  - => high resolution and low noise 2D (3D)

See related posters for more information:

- Wauthier et al.
- Cayol et al.
- Samsonov et al.
- Smets et al.



Mw >5 EQ (USGS ) and geological faults after [Villeneuve, 1980]

#### **Tectonic Context**

- 100km long segments linked by accommodation zones (coincide with transfer faults and volcanic provinces)
- Unlike E branch, W rift experiences intense seismicity and less volcanism except in VP
- VVP: active since mid-Miocene (12 Ma)
   Today: Nyiragongo and Nyamulagira
- SKVP: 2-3 Ma younger though extinct (9 Ma)
- In amagmatic segments: opening accommodates through slip along border faults.
- In volcanically active areas: strain accommodation by magma intrusion decreases the amount of extension accommodated by fault-slip
- What about VVP and SKVP?
- Difficult area for on-site monitoring





## Nyiragongo 2002 eruption

See poster by Wauthier et al.



### Consistent with context, geochemistry etc...



(Wauthier et al. under review)

But not only ... : Small overpressure !

# Implication for opening mode assessment: (see poster by Cayol et al.)

- Direction of dikes is guided by rift extensional stress
- Low overpressure (1-5 Mpa) determined from modelling correspond to crustal stresses that are isotropic lithostatic
- But... if the rift is driven by fault motion:
  - horizontal stress must be small enough for faults to be on the verge of failure.
  - In this case horizontal stress would be << vertical stress and the overpressure (ie. Pm - horizontal stress) would be large, eg typically 45 MPa at few km depth (Rubin 1990)
- Now, the 0.7m opening => Compression would need 250 yr at the extensional rate of 2.8 mm/year to be relaxed.
- Since there was a similar eruption in 1977, eruptions have likely relaxed the rift extension

The rift would now be driven by magmatic rather than tectonic activity.

#### Role of the mantle plume

- Mature rifts are characterized by magma-driven extension and a thinned lithosphere
- Here, the amount of tectonic extension is only 15 %: the rift is immature
- It's too small to generate basalts by adiabatic decompression
  - Magma could be supplied by the mantle plume beneath East Africa



# What about SKVP? The Bukavu-Cyangugu 2008 Earthquake



(d'Oreye et al., 2011)

- InSAR allowed accurate relocation
- Seismic ≈ geodetic moment,
   i.e. brittle rupture : no magma
   involved at least at shallow dep



involved at least at shallow depth => favours a mode of rift opening in which crustal extension is accommodated seismically

## New opportunities offered by dense SAR database

InSAR set



|                             |                   |      | 77 |     |      |
|-----------------------------|-------------------|------|----|-----|------|
| ENVISAT, Track 035IS2 (dsc) | 20030116-20100916 | -168 | 25 | 42  | 224  |
| ENVISAT, Track 450IS7 (dsc) | 20060519-20100910 | -168 | 44 | 30  | 169  |
| ENVISAT, Track 314IS7 (asc) | 20060613-20100831 | -12  | 44 | 41  | 308  |
| ENVISAT, Track 228IS2 (asc) | 20021225-20061025 | -12  | 23 | 33  | 53   |
| ENVISAT, Track 042IS5 (asc) | 20080424-20100916 | -12  | 38 | 20  | 96   |
| ENVISAT, Track 493IS4 (dsc) | 20080421-20100913 | -168 | 34 | 18  | 86   |
| ALOS, Track 580 (asc)       | 20071027-20100504 | -12  | 39 | 9   | 36   |
| RADARSAT-2, F21 (dsc)       | 20091215-20110527 | -168 | 35 | 16  | 79   |
| Total (only used images):   | 20030116-20100916 | į.   |    | 181 | 1051 |

Time span

 $\theta$ , °  $|\phi$ , ° |N| M

#### We also have

- (limited) ERS-1/2 data starting from 1992,
- four more beams from ENVISAT (in various geometries) and
- recent Radarsat-2 Ultra-Fine and Fine beams data (different resolution and geometry).

(Samsonov and d'Oreye, under review)

Can we produce continuous time series of ground deformation over the entire period?

# Multidimensional time series analysis of ground deformation from SAR data acquired in various orbital geometries

(See poster by Samsonov and d'Oreye)

- Method based on the Small Baseline Subset method (Berardino et al 2002).
- Combination of all possible air-borne and space-borne SAR data acquired with
  - different acquisition parameters,
  - temporal and spatial sampling and resolution,
  - wave-band and polarization

to reconstruct 2D (3D) displacement time series

- Singular Value Decomposition is used for finding a solution of underdetermined problem.
- Verified with theoretical deformation + noise using real time matrix





## Conclusions

- Despite the equatorial vegetation, InSAR offers unique opportunities
  - to monitor eruptions in the Virunga: source modeling, accurate location, lava flow mapping... (no presented here)
  - to study activity in the Virunga: provided hypothesis on the rifting mode in both the VVP and the SKVP
- Given the local context, it proved to be the most sustainable method for studying these volcanoes
- The dense database also offered the possibility to develop new methodology for time series analysis. Such tool allowed the first unambiguous detection of pre-eruptive deformations few weeks prior some eruptions in the VVP



BS is supported by a PhD grant from the Luxembourg National Research Fund

