A Rare Magmatic Event on the other side of the Red Sea: The 2009 Dyke Intrusion and Seismic Crisis in Harrat Lunayyir, western Saudi Arabia

Sigurjón Jónsson
King Abdullah University of Science and Technology (KAUST)
Thuwal, Saudi Arabia

Contributions from Zhong Lu (USGS), Salah El-Hadidy (SGS), Ian Steward (SGS), Hani Zahran (SGS), John Pallister (USGS), Wendy McCausland (USGS)
- Red Sea opening increases from 7 mm/yr in the north to 17 mm/yr in the south
- Volcanic provinces in Yemen, Saudi Arabia, Jordan, and Syria became active when Red Sea opening started, now cover 180,000 km² in Saudi Arabia alone
- Several historical eruptions, the best known is the 1256 Madinah event
- Harrat Lunayyir is a small lava province in north-western Saudi Arabia
The 2009 Seismic Crisis in Harrat Lunayyir

- Seismic activity started in mid-April and intensified steadily until mid-May
- Several magnitude 4.0-5.7 earthquakes in 17-19 May
- 3-40000 people evacuated! Stayed in Yanbu and Medina for weeks
Western Saudi Arabia is a pre-Cambrian shield (over 550 M.y. old). Opening of the Red Sea started some 40 M.y. ago. Volcanic provinces in Yemen, Saudi Arabia, Jordan, and Syria became active at the same time.
Fresh-looking lavas and cinder cones

Most recent activity possibly ~1000 years ago
ALOS data spanning the 2009 EQ activity

Extension

Graben Subsidence
The 3D ground displacements were estimated from six different data sets:

- Ascending and Descending Envisat InSAR
- Ascending ALOS InSAR
- The three corresponding multiple aperture interferograms (MAI)
Main Findings

- Deformation well explained with ~10 km long dyke and graben-bounding faulting
- Depth to dyke top only 1-2 km
- Dyke opening 3-4 m
- Faulting over 1 m in places
- Volume ~ 0.1 km3 (or ~40 kg for each person in the world)
SO$_2$ emissions on 19 May

- SO$_2$ emissions measured by the OMI instrument
- No signs of elevated SO$_2$ above the dyke intrusion in Harrat Lunayyir

From Nickolay A. Krotkov, NASA
ALOS InSAR data in the nearfield

- Phase discontinuities clearly indicate fault offsets
- Main offset seen across the western graben bounding fault
ALOS InSAR data in the nearfield

- Phase discontinuities clearly indicate fault offsets
- Main offset seen across the western graben bounding fault
Diking may have formed in a "Half-graben"

Tensional Joints

Normal Fault
Where did the Magma come from?
No Uplift prior to the Intrusion!

Oct 2006 - March 2008

- Other InSAR data also show no significant deformation between 2004 and May 8, 2009
- 0.1 km3 volume change at 10 km depth would cause ~24 cm vertical displacement (or ~6 cm at 20 km depth)
Also no Uplift after the Intrusion

Sept. 2009 - April 2010

- Deformation transient associated with the intrusion was over in August 2009
Crustal Thickness and LAB

- Crust thickens away from the Red Sea towards east [Chang et al. 2011]
- Crustal thickness estimated ~25 km in the Harrat Lunayyir area

Hansen et al. [2007]
S-wave velocity and splitting

- S-wave velocity deviations at 150 km depth show slower velocities under Arabia, offset from the Red Sea [Chang et al. 2011]
- Shear-wave splitting shows fast N-S directions under western Arabia [Hansen et al., 2006].

From Chang et al. [2011] using results from Gashawbeza et al. [2004], Hansen et al. [2006],
Western Arabia is a magmatically active “passive” margin:

What is the Extension Rate?
Limited Internal Deformation of Arabia

- Campaign and Continuous GPS measurements do not reveal any internal deformation of the Arabian plate
- Stations on the west coast move with the entire plate
- Confidence level is ~1 mm/year

Arrajehi et al., 2010
Eruptions & Intrusions in western Arabia

- 21 on-plate historical eruptions during the past 1500 years (Camp et al., 1987)
- Some eruptions were probably not detected
- Many intrusions may have been without eruptions (like in Harrat Lunayyir)

Camp et al., 1989
Assuming HL-type of intrusion every 50 years,

- Intrusion production in the upper crust would amount to \(\sim 2 \text{ km}^3 \) per 1000 years.

- Along the 2000 km boundary it would mean an average extension rate of only 0.1 mm/year.

- Even 5-10x higher production rate would result in undetectable extension.

Camp et al., 1989
Conclusions

- The observed meter-scale extension, faulting, and graben subsidence was caused by a ~0.1 km3 dyke intrusion that came within only ~2 km of the surface.

- The lack of pre- and post-event uplift suggests a deep magma source, no hint of any crustal magma chamber.

- Assuming Harrat Lunayyir type of intrusions occurs every 50 years (or even every 10 years) in western Arabia, it would correspond to an average extension rate that is still below the detection level of 1 mm/year.

- However, the activity shows that the extension across the Nubian-Arabian boundary is broadly distributed and not entirely focused on the rift axis.
Thanks!

Multiple Faculty, Postdoc, Ph.D. and M.S. opportunities at KAUST – King Abdullah University of Science and Technology

www.kaust.edu.sa
sigurjon.jonsson@kaust.edu.sa