Melt distribution between the crust and mantle beneath the Dabbahu-Manda Hararo rift segment, Afar, from 3D magnetotelluric imaging

Sophie Hautot, Nick Johnson, Mohammed Desissa, Kathy Whaler, Graham Dawes, and Shimeles Fisseha
The magnetotelluric data set

(Ebinger et al., 2010)

The Dabbahu-Manda-Hararo magmatic segment

2008-2009 MT sites
2010 MT sites (for 3D)
MT measures a 4 complex components tensor. The method, based on induced EM fields is very sensitive to 3-D structures.

With a 3D interpretation

- No a priori assumption on the geological structures
- All data collected are used in the inversion (number x2 compared to 2D inversion)
3D MT inversion: Methodology

We applied our full 3D MT inversion code to perform the inversion of 2 data sets independently (Hautot and Tarits, 2009)
3D MT inversion: Methodology

The 2 starting models are uniform half-space (25 ohm-m)

Dabbahu (north)

Hararo (south)

Full 3D inversion: resistivity distribution in the 3D grid that fits all data
Results

Dabbahu (North, active segment)

rms error = 4.1
Results

Hararo (South, currently not active segment)

rms error = 3.4
Results

Vertical cross-sections along profiles

Dyke 2005
Results

Vertical cross-sections along profiles

Receiver function analysis (Hammond et al., 2011)

- **Upper mantle**
- **Crust**
- **Dyke 2005**
- **Western Plateau**
- Streched & intruded crust
- Vp/Vs < 1.9
- Vp/Vs 1.85-2.2
- Vp/Vs < 1.9
- Dahla Basalts
- Manda-Harraro Volcanic segment

![Diagram of vertical cross-sections along profiles with color legend and scale for resistivity (ohm–m)]
Results

Resistivity maps: Upper Mantle (> 20 km depth)

- No significant difference between Dabbahu (North) and Hararo (South) regions
- Average resistivity of 15-20 ohm-m
- Low value implies the presence of melt/liquid in the mantle
Results

Resistivity maps: Lower Crust (15-20 km depth)

Independent inversion of the Dabbahu (North) and Hararo (South) data set:
- Similar resistivity structures
- Continuity of the structures from North to South

Large conductive bodies: Suggest large distribution of partial melt
Results

Resistivity maps: Mid Crust (8-15 km depth)

Conductive bodies to the North:
Mid crustal magma chambers beneath Ado'Ale and Dabbahu Volcanic complex?

No melt storage beneath Hararo region
Results

Resistivity maps: Upper Crust (3-5 km depth)

Image of the top of the mid crustal magma chambers to the North beneath Ado'Ale and Dabbahu Volcanic complex

Poor coverage of MT sites at shallow depth: Geometry not fully constrained.
Discussion

Vertical sections along the rift zone

Resistivity structures differ from SE to NW only at crustal depths ~ 15 km
Resistivity of liquids in the mantle ~0.2-1 ohm-m (Alkali-hydrous - basaltic melt, Gaillard et al., 2008). Percolation threshold =1 %

Mantle resistivity from model ~20 ohm-m

1% melt: melt resistivity should be ~0.2 ohm-m
(with a dry mantle resistivity @1200-1300 C: ~1000 ohm-m)

If melt resistivity ~1 ohm-m, then the % melt should be ~5-10 %: would percolate in the SE
Summary

• The 3D resistivity inversion of the MT data sets provide the image of the crust-upper mantle structure beneath an active and inactive magmatic segment.

• The structure of the crust beneath the Dabbahu region (active) confirms results from other studies with 2 magma sources at crustal depth. MT constrain their depth and geometry.

• From the lower most part of the crust to the mantle, the resistivity structures are similar. Low resistivity suggest highly conductive phase, probably melt (deep source).

• Results suggest that the nature of the liquid and percolation threshold could be discussed from these data and compared with results from geochemistry and other field studies.